Skip to main content

Advertisement

Log in

Solubility Enhancement and Inhalation Delivery of Cyclodextrin-Based Inclusion Complex of Delamanid for Pulmonary Tuberculosis Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) is a contiguous airborne disease caused by Mycobacterium tuberculosis (M.tb), primarily affecting the human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become a global challenge toward eradicating TB. Conventional TB treatment involves frequent dosing and prolonged treatment regimens predominantly by an oral or invasive route, leading to treatment-related systemic adverse effects and patient’s noncompliance. Pulmonary delivery is an attractive option as we could reduce dose, limit systemic side-effects, and achieve rapid onset of action. Delamanid (DLD), an antituberculosis drug, has poor aqueous solubility, and in this study, we aim to improve its solubility using cyclodextrin complexation. We screened different cyclodextrins and found that HP-β-CD resulted in a 54-fold increase in solubility compared to a 27-fold and 13-fold increase by SBE-β-CD and HP-ɣ-CD, respectively. The stability constant (265 ± 15 M−1) and complexation efficiency (8.5 × 10−4) suggest the formation of a stable inclusion complex of DLD and HP-β-CD in a 2:1 ratio. Solid-state characterization studies (DSC, PXRD, and NMR) further confirmed successful complexation of DLD in HP-β-CD. The nebulized DLD-CD complex solution showed a mass median aerodynamic diameter of 4.42 ± 0.62 μm and fine particle fraction of 82.28 ± 2.79%, suggesting deposition in the respiratory airways. In bacterial studies, minimum inhibitory concentration of DLD-CD complex was significantly reduced (four-fold) compared to free DLD in M.tb (H37Ra strain). Furthermore, accelerated stability studies confirmed that the inclusion complex was stable for 4 weeks with 90%w/w drug content. In conclusion, we increased the aqueous solubility of DLD through cyclodextrin complexation and improved its efficacy in vitro.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chakaya J, Khan M, Ntoumi F, Aklillu E, Fatima R, Mwaba P, et al. Global Tuberculosis Report 2020 – reflections on the Global TB burden, treatment and prevention efforts. Int J Infect Dis. 2021;113:S7-12.

    Article  CAS  Google Scholar 

  2. Global Pandemic [Internet]. TB Alliance. [cited 2022 Jul 1]. Available from: https://www.tballiance.org/why-new-tb-drugs/global-pandemic.

  3. Natarajan A, Beena PM, Devnikar AV, Mali S. A systemic review on tuberculosis. Indian J Tuberc. 2020;67:295–311.

    Article  Google Scholar 

  4. Pham D-D, Fattal E, Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm. 2015;478:517–29.

    Article  CAS  Google Scholar 

  5. Sotgiu G, Centis R, D’ambrosio L, Migliori GB. Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med. 2015;5:a017822.

    Article  Google Scholar 

  6. Ginsberg AM, Spigelman M. Challenges in tuberculosis drug research and development. Nat Med. 2007;13:290–4.

    Article  CAS  Google Scholar 

  7. Ausi Y, Santoso P, Sunjaya DK, Barliana MI. Between curing and torturing: burden of adverse reaction in drug-resistant tuberculosis therapy. Patient Prefer Adherence Dove Press. 2021;15:2597–607.

    Article  Google Scholar 

  8. Padda IS, Reddy KM. Antitubercular medications [Internet]. StatPearls Internet. StatPearls Publishing; 2021 [cited 2022 Jul 1]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557666/.

  9. The End TB Strategy [Internet]. [cited 2022 Jul 1]. Available from: https://www.who.int/teams/global-tuberculosis-programme/the-end-tb-strategy.

  10. Ryan NJ, Lo JH. Delamanid: first global approval. Drugs. 2014;74:1041–5.

    Article  CAS  Google Scholar 

  11. EMA. Deltyba [Internet]. Eur. Med. Agency. 2018 [cited 2022 Jul 1]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/deltyba.

  12. Skripconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, Kummik T, et al. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J Eur Respir Soc. 2013;41:1393–400.

    Article  Google Scholar 

  13. Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 2012;366:2151–60 (Massachusetts Medical Society).

    Article  CAS  Google Scholar 

  14. Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs. 2015;75:91–100.

    Article  CAS  Google Scholar 

  15. Stinson K, Kurepina N, Venter A, Fujiwara M, Kawasaki M, Timm J, et al. MIC of Delamanid (OPC-67683) against mycobacterium tuberculosis clinical isolates and a proposed critical concentration. Antimicrob Agents Chemother. 2016;60:3316–22 (American Society for Microbiology).

    Article  CAS  Google Scholar 

  16. Xavier AS, Lakshmanan M. Delamanid: a new armor in combating drug-resistant tuberculosis. J Pharmacol Pharmacother. 2014;5:222–4.

    Article  CAS  Google Scholar 

  17. Tao X, Gao C, Huang Z-G, Luo W, Liu K-L, Peng C-T, et al. Discovery and evaluation of novel nitrodihydroimidazooxazoles as promising anti-tuberculosis agents. Bioorg Med Chem Lett. 2019;29:2511–5.

    Article  CAS  Google Scholar 

  18. Ramirez G, Pham AC, Clulow AJ, Salim M, Hawley A, Boyd BJ. Sustained absorption of delamanid from lipid-based formulations as a path to reduced frequency of administration. Drug Deliv Transl Res. 2021;11:1236–44.

    Article  CAS  Google Scholar 

  19. Gupta D, Bhatia D, Dave V, Sutariya V, Varghese Gupta S. Salts of therapeutic agents: chemical, physicochemical, and biological considerations. Mol Basel Switz. 2018;23:1719 (MDPI).

    Google Scholar 

  20. Rautio J, Meanwell NA, Di L, Hageman MJ. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov. 2018;17:559–87.

    Article  CAS  Google Scholar 

  21. Neslihan Gursoy R, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58:173–82.

    Article  CAS  Google Scholar 

  22. Salzano G, Wankar J, Ottani S, Villemagne B, Baulard AR, Willand N, et al. Cyclodextrin-based nanocarriers containing a synergic drug combination: a potential formulation for pulmonary administration of antitubercular drugs. Editor Spec Ed Int J Pharm Honor Profr Dominique Duchêne. 2017;531:577–87.

    CAS  Google Scholar 

  23. Arca HÇ, Mosquera-Giraldo LI, Pereira JM, Sriranganathan N, Taylor LS, Edgar KJ. Rifampin stability and solution concentration enhancement through amorphous solid dispersion in cellulose ω-carboxyalkanoate matrices. J Pharm Sci. 2018;107:127–38.

    Article  CAS  Google Scholar 

  24. Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int. 2015/10/25 ed. Hindawi Publishing Corporation; 2015;2015:198268–198268.

  25. Haimhoffer Á, Rusznyák Á, Réti-Nagy K, Vasvári G, Váradi J, Vecsernyés M, et al. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci Pharm. 2019;87:33 (Multidisciplinary Digital Publishing Institute).

    Article  CAS  Google Scholar 

  26. Sharma N, Baldi A. Exploring versatile applications of cyclodextrins: an overview. Drug Deliv Taylor & Francis. 2016;23:729–47.

    CAS  Google Scholar 

  27. Price DN, Kunda NK, Miller EK, Muttil P. Inhaled therapeutics against TB: the promise of pulmonary treatment and prevention strategies in the clinic. Inhal Aerosols. 3rd ed. CRC Press; 2019.

  28. Mehta P, Bothiraja C, Kadam S, Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. Artif Cells Nanomed Biotechnol. 2018;46:S791-806 (Taylor & Francis).

    Article  CAS  Google Scholar 

  29. Hanif SNM, Garcia-Contreras L. Pharmaceutical aerosols for the treatment and prevention of tuberculosis. Front Cell Infect Microbiol. 2012;2:118.

    Article  Google Scholar 

  30. Braunstein M, Hickey AJ, Ekins S. Why wait? The case for treating tuberculosis with inhaled drugs. Pharm Res. 2019;36:166.

    Article  CAS  Google Scholar 

  31. Parvathaneni V, Elbatanony RS, Goyal M, Chavan T, Vega N, Kolluru S, et al. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int J Mol Sci. Multidisciplinary Digital Publishing Institute; 2021;22:4783 (1–18).

  32. Sawant SS, Patil SM, Shukla SK, Kulkarni NS, Gupta V, Kunda NK. Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation. Drug Deliv Transl Res. 2021;1–14.

  33. Patil SM, Sawant SS, Kunda NK. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int J Pharm. 2021;607:121046 ((1-11)).

    Article  CAS  Google Scholar 

  34. Vartak R, Patil SM, Saraswat A, Patki M, Kunda NK, Patel K. Aerosolized nanoliposomal carrier of remdesivir: an effective alternative for COVID-19 treatment in vitro. Nanomed Future Med. 2021;16:1187–202.

    Article  CAS  Google Scholar 

  35. Patil SM, Kunda NK. Anticancer activity of D-LAK-120A, an antimicrobial peptide, in non-small cell lung cancer (NSCLC). Biochimie. 2022;201:7–17.

    Article  CAS  Google Scholar 

  36. Ma DQ, Rajewski RA, Velde DV, Stella VJ. Comparative effects of (SBE)7m-β-CD and HP-β-CD on the stability of two anti-neoplastic agents, melphalan and carmustine. J Pharm Sci Elsevier. 2000;89:275–87.

    Article  CAS  Google Scholar 

  37. Okimoto K, Rajewski RA, Uekama K, Jona JA, Stella VJ. The interaction of charged and uncharged drugs with neutral (HP-beta-CD) and anionically charged (SBE7-beta-CD) beta-cyclodextrins. Pharm Res. 1996;13:256–64.

    Article  CAS  Google Scholar 

  38. Zia V, Rajewski RA, Stella VJ. Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7M-β-CD to HP-β-CD. Pharm Res. 2001;18:667–73.

    Article  CAS  Google Scholar 

  39. Vartiainen V, Bimbo LM, Hirvonen J, Kauppinen EI, Raula J. Aerosolization, drug permeation and cellular interaction of dry powder pulmonary formulations of corticosteroids with hydroxypropyl-β-cyclodextrin as a solubilizer. Pharm Res. 2017;34:25–35.

    Article  CAS  Google Scholar 

  40. Mader WJ, Higuchi T. Phase solubility analysis. C R C Crit Rev Anal Chem. 1970;1:193–215 (Taylor & Francis).

    Article  CAS  Google Scholar 

  41. Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov Today. 2016;21:363–8.

    Article  CAS  Google Scholar 

  42. Han D, Han Z, Liu L, Wang Y, Xin S, Zhang H, et al. Solubility enhancement of myricetin by inclusion complexation with heptakis-O-(2-hydroxypropyl)-β-cyclodextrin: a joint experimental and theoretical study. Int J Mol Sci. 2020;21:766 (Multidisciplinary Digital Publishing Institute).

    Article  CAS  Google Scholar 

  43. Anjani QK, Domínguez-Robles J, Utomo E, Font M, Martínez-Ohárriz MC, Permana AD, et al. Inclusion complexes of rifampicin with native and derivatized cyclodextrins: in silico modeling, formulation, and characterization. Pharm Basel Switz. 2021;15:20.

    Google Scholar 

  44. Wu W, Xue W. Evaluation of anticancer activity of honokiol by complexation with hydroxypropyl-β-cyclodextrin. Colloids Surf B Biointerfaces. 2020;196:111298.

    Article  CAS  Google Scholar 

  45. Vyas A, Gidwani B, Tripathi A, Dhurve P. Significance of jobs plot in cyclodextrin complexation. Res J Pharm Technol. 2016;9:1013–6 (Journal of Ravishankar University (Part-B)).

    Article  Google Scholar 

  46. Ulatowski F, Dąbrowa K, Bałakier T, Jurczak J. Recognizing the limited applicability of job plots in studying host–guest interactions in supramolecular chemistry. J Org Chem Am Chem Soc. 2016;81:1746–56.

    Article  CAS  Google Scholar 

  47. Sid D, Baitiche M, Elbahri Z, Djerboua F, Boutahala M, Bouaziz Z, et al. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: in silico modelling, formulation, characterisation, and in vitro studies. J Enzyme Inhib Med Chem. 2021;36:605–17 (Taylor & Francis).

    Article  CAS  Google Scholar 

  48. Sbârcea L, Tănase I-M, Ledeți A, Cîrcioban D, Vlase G, Barvinschi P, et al. Encapsulation of risperidone by methylated β-cyclodextrins: physicochemical and molecular modeling studies. Molecules. 2020;25:5694 (Multidisciplinary Digital Publishing Institute).

    Article  Google Scholar 

  49. Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Mol Basel Switz. 2018;23:E1161.

    Google Scholar 

  50. Duong TV, Nguyen HT, Taylor LS. Combining enabling formulation strategies to generate supersaturated solutions of delamanid: in situ salt formation during amorphous solid dispersion fabrication for more robust release profiles. Eur J Pharm Biopharm. 2022;174:131–43.

    Article  CAS  Google Scholar 

  51. Couto VM, de Oliveira-Nascimento L, Cabeça LF, Geraldes DC, Costa JSR, Riske KA, et al. Capsaicin-cyclodextrin complex enhances mepivacaine targeting and improves local anesthesia in inflamed tissues. Int J Mol Sci. 2020;21:5741 (Multidisciplinary Digital Publishing Institute).

    Article  CAS  Google Scholar 

  52. Giordano F, Novak C, Moyano JR. Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta. 2001;380:123–51.

    Article  CAS  Google Scholar 

  53. Hao X, Sun X, Zhu H, Xie L, Wang X, Jiang N, et al. Hydroxypropyl-β-cyclodextrin-complexed resveratrol enhanced antitumor activity in a cervical cancer model: in vivo analysis. Front Pharmacol [Internet]. 2021 [cited 2022 Jul 10];12. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2021.573909.

  54. Figueiras A, Cardoso O, Veiga F, Carvalho RB, Ballaro G. Preparation and characterization of trimethoprim inclusion complex with methyl-β-cyclodextrin and determination of its antimicrobial activity [Internet]. 2015 [cited 2022 Jul 10]. Available from: https://www.semanticscholar.org/paper/Preparation-and-characterization-of-Trimethoprim-of-Figueiras-Cardoso/96a6cf9f374d1aa8b8d7286101b139fe90caf28a.

  55. Zheng Y, Chow AHL. Production and characterization of a spray-dried hydroxypropyl-β-cyclodextrin/quercetin complex. Drug Dev Ind Pharm. 2009;35:727–34 (Taylor & Francis).

    Article  CAS  Google Scholar 

  56. Cyclodextrin: a promising candidate in enhancing oral bioavailability of poorly water soluble drugs. MOJ Bioequivalence Bioavailab [Internet]. MedCrave Publishing; 2017 [cited 2022 Jul 10];Volume 3. Available from: https://medcraveonline.com/MOJBB/MOJBB-03-00034.pdf.

  57. Muthu MS, Feng S-S. Pharmaceutical stability aspects of nanomedicines. Nanomed Future Med. 2009;4:857–60.

    Article  CAS  Google Scholar 

  58. Jacob S, Nair AB. Cyclodextrin complexes: perspective from drug delivery and formulation. Drug Dev Res. 2018;79:201–17.

    Article  CAS  Google Scholar 

  59. Wang X, Parvathaneni V, Shukla SK, Kulkarni NS, Muth A, Kunda NK, et al. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int J Biol Macromol. 2020;164:638–50.

    Article  CAS  Google Scholar 

  60. Rosati JA, Leith D, Kim CS. Monodisperse and polydisperse aerosol deposition in a packed bed. Aerosol Sci Technol. 2003;37:528–35.

    Article  CAS  Google Scholar 

  61. Guan M, Zeng X, Shi R, Zheng Y, Fan W, Su W. Aerosolization performance, antitussive effect and local toxicity of naringenin-hydroxypropyl-β-cyclodextrin inhalation solution for pulmonary delivery. AAPS PharmSciTech. 2021;22:20.

    Article  CAS  Google Scholar 

  62. Su W, Liang Y, Meng Z, Chen X, Lu M, Han X, et al. Inhalation of tetrandrine-hydroxypropyl-β-cyclodextrin inclusion complexes for pulmonary fibrosis treatment. Mol Pharm Am Chem Soc. 2020;17:1596–607.

    Article  CAS  Google Scholar 

  63. Evrard B, Bertholet P, Gueders M, Flament M-P, Piel G, Delattre L, et al. Cyclodextrins as a potential carrier in drug nebulization. J Control Release Off J Control Release Soc. 2004;96:403–10.

    Article  CAS  Google Scholar 

  64. Adhikari BR, Dummer J, Gordon KC, Das SC. An expert opinion on respiratory delivery of high dose powders for lung infections. Expert Opin Drug Deliv. 2022;0:1–19 (Taylor & Francis).

    Google Scholar 

  65. Shibata M, Shimokawa Y, Sasahara K, Yoda N, Sasabe H, Suzuki M, et al. Absorption, distribution and excretion of the anti-tuberculosis drug delamanid in rats: extensive tissue distribution suggests potential therapeutic value for extrapulmonary tuberculosis. Biopharm Drug Dispos. 2017;38:301–12.

    Article  CAS  Google Scholar 

  66. Buttini F, Colombo G. Formulation strategies for antitubercular drugs by inhalation. Drug Deliv Syst Tuberc Prev Treat [Internet]. John Wiley & Sons, Ltd; 2016 [cited 2022 Jul 11]. p. 197–212. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118943182.ch10.

  67. He D, Deng P, Yang L, Tan Q, Liu J, Yang M, et al. Molecular encapsulation of rifampicin as an inclusion complex of hydroxypropyl-β-cyclodextrin: design; characterization and in vitro dissolution. Colloids Surf B Biointerfaces. 2013;103:580–5.

    Article  CAS  Google Scholar 

  68. Tewes F, Brillault J, Couet W, Olivier J-C. Formulation of rifampicin-cyclodextrin complexes for lung nebulization. J Control Release Off J Control Release Soc. 2008;129:93–9.

    Article  CAS  Google Scholar 

  69. Amaro BR, Alves CCS, Ferreira GF, Carvalho PE, da Silva JG, Souza CA, et al. Multifunctionality of βCD/ofloxacin and HPβCD/ofloxacin complexes: improvement of the antimicrobial activity and apoptosis induction on lung adenocarcinoma A549 cells. J Braz Chem Soc. 2020;31:2628–37 (Sociedade Brasileira de Química).

    CAS  Google Scholar 

  70. Salem II, Steffan G, Düzgünes N. Efficacy of clofazimine–modified cyclodextrin against Mycobacterium avium complex in human macrophages. Int J Pharm. 2003;260:105–14.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by funds provided to NKK by the Department of Pharmaceutical Sciences and College of Pharmacy and Health Sciences (CPHS), St. John’s University. SMP, DSB, TC, KP, and VP were supported by teaching assistantship from the Department of Pharmaceutical Sciences, CPHS, St. John’s University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SMP, DSB, NKK; methodology: SMP, DSB, TC, KP, VP, AM, NKK; formal analysis: SMP, DSB, TC, KP, VP, AM; investigation: SMP, DSB, TC, KP, VP, AM; data curation: SMP, DSB, TC, KP, AJC, VP, AM, NKK; writing — original draft preparation: SMP, DSB, TC, KP, VP, AM, NKK; writing — review and editing: SMP, KP, AM, NKK; resources: NKK; visualization: SMP, KP, AM, NKK; supervision: AM, NKK; project administration: NKK; funding acquisition: NKK.

Corresponding author

Correspondence to Nitesh K. Kunda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Suyash M. Patil and Druva Sarika Barji are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.M., Barji, D.S., Chavan, T. et al. Solubility Enhancement and Inhalation Delivery of Cyclodextrin-Based Inclusion Complex of Delamanid for Pulmonary Tuberculosis Treatment. AAPS PharmSciTech 24, 49 (2023). https://doi.org/10.1208/s12249-023-02510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02510-1

Keywords

Navigation