Skip to main content

Advertisement

Log in

Recent Advances on the Biological Study of Pharmaceutical Cocrystals

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

As a low-risk, low-cost, but high-reward route, cocrystallization of drugs with appropriate coformers is applied to improve the physiochemical and biopharmaceutical properties of drugs. Currently, most researchers concentrate their efforts on the preparation, characterization, and improvement of physicochemical properties of pharmaceutical cocrystals. On the contrary, the biological study of pharmaceutical cocrystals has not attracted wide attention of researchers. In this review, we have focused on recent advances reporting the biological studies of pharmaceutical cocrystals. The covered areas consist of the solubility and permeability, the pharmacokinetics study, metabolism and distribution, pharmacodynamics research, and the toxicological evaluation of pharmaceutical cocrystals. Besides, discussions have been made on the in vivoin vitro correlations for pharmaceutical cocrystals, the enhancement of efficiency and reduction of toxicity for pharmaceutical cocrystals, and the interaction between APIs and coformers in pharmaceutical cocrystals and marketed pharmaceutical cocrystals as well as their biological studies. At the same time, some problems such as the amount of animal samples, the number and distribution of blood sampling points, investigation on the pharmacokinetics of physical mixtures containing APIs and coformers, and the consideration of species differences should be taken into account. Although pharmaceutical cocrystals face some challenges in clarifying the characteristics of metabolism and distribution, revealing potential pharmacological mechanism, and evaluating safety, cocrystal engineering is still considered a green and promising approach to developing valuable new drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yousef MAE, Vangala VR. Pharmaceutical co-crystals: molecules, crystals, formulations, medicines. Cryst Growth Des. 2019;19(12):7420–38.

    Article  CAS  Google Scholar 

  2. Karimijafari M, Padrela L, Walker G, Croker D. Creating cocrystals a review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des. 2018;18(10):6370–87.

    Article  CAS  Google Scholar 

  3. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012;12(5):2147–52.

    Article  CAS  Google Scholar 

  4. Mapp LK, Coles SJ, Aitipamula S. Design of cocrystals for molecules with limited hydrogen bonding functionalities: propyphenazone as a model system. Cryst Growth Des. 2016;17(1):163–74.

    Article  Google Scholar 

  5. Zhang GGZ, Gu C, Zell MT, Burkhardt RT, Munson EJ. Crystallization and transitions of sulfamerazine polymorphs. J Pharm Sci. 2002;91(4):1089–100.

    Article  CAS  PubMed  Google Scholar 

  6. Byrn SR, Pfeiffer RR, Stowell JG. Solid-state chemistry of drugs. 2nd ed. West Lafayette (IN): SSCI Inc.; 1999.

    Google Scholar 

  7. Yutani R, Haku R, Teraoka R, Tode C, Koide T, Kitagawa S, et al. Comparative evaluation of the photostability of carbamazepine polymorphs and cocrystals. Crystals. 2019;9(11):553–63.

    Article  CAS  Google Scholar 

  8. Rodriguez-Hornedo N, Nehm SJ, Jayasanker A. Cocrystal: design, properties and formation mechanism. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology. 4th ed. New York: Informa Health Care; 2013. p. 512–30.

    Google Scholar 

  9. Heinz A, Strachan CJ, Gordon KC, Rades T. Analysis of solid state transformations of pharmaceutical compounds using vibrational spectroscopy. J Pharm Pharmacol. 2009;61:971–88.

    Article  CAS  PubMed  Google Scholar 

  10. Chadha R, Saini A, Arora P, Bhandari S. Pharmaceutical cocrystals: a novel approach for oral bioavailability enhancement of drugs. Critical ReviewsTM in Therapeutic Drug Carrier Systems. 2012;29(3):183–218.

    Article  CAS  Google Scholar 

  11. Ahmed H, Shimpi MR, Velaga SP. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol. Drug Dev Ind Pharm. 2017;43(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  12. Mannava MKC, Gunnam A, Lodagekar A, Shastri NR, Nangia AK, Solomon KA. Enhanced solubility, permeability, and tabletability of nicorandil by salt and cocrystal formation. CrystEngComm. 2021;23(1):227–37.

    Article  CAS  Google Scholar 

  13. Singaraju A, Bahl D, Wang C, Swenson D, Sun C, Stevens L. Molecular interpretation of the compaction performance and mechanical properties of caffeine cocrystals: a polymorphic study. Mol Pharm. 2020;17(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  14. Duggirala NK, Smith AJ, Wojtas Ł, Shytle RD, Zaworotko MJ. Physical stability enhancement and pharmacokinetics of a lithium ionic cocrystal with glucose. Cryst Growth Des. 2014;14(11):6135–42.

    Article  CAS  Google Scholar 

  15. Syed TA, Gaikar VG, Mukherjee S. Stability of co-crystals of caffeine with gallic acid in presence of coformers. J Food Process Eng. 2019;42(4):e13066.

    Article  Google Scholar 

  16. Bofill L, Sande DD, Barbas R, Prohens R. New cocrystal of ubiquinol with high stability to oxidation. Cryst Growth Des. 2020;20(8):5583–8.

    Article  CAS  Google Scholar 

  17. Guo C, Zhang Q, Zhu B, Zhang Z, Bao J, Ding Q, et al. Pharmaceutical cocrystals of nicorandil with enhanced chemical stability and sustained release. Cryst Growth Des. 2020;20(10):6995–7005.

    Article  CAS  Google Scholar 

  18. Vangala VR, Chow PS, Tan RBH. Characterization, physicochemical and photo-stability of a co-crystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acid. CrystEngComm. 2011;13(3):759–62.

    Article  CAS  Google Scholar 

  19. Zhang Y, Yang Z, Zhang S, Zhou X. Synthesis, crystal structure, and solubility analysis of a famotidine cocrystal. Crystals. 2019;9(7):360–9.

    Article  Google Scholar 

  20. Wu Y, Hao X, Li J, Guan A, Zhou Z, Guo F. New insight into improving the solubility of poorly soluble drugs by preventing the formation of their hydrogen-bonds: a case of dapsone salts with camphorsulfonic and 5-sulfosalicylic acid. CrystEngComm. 2021;23(35):6191–8.

    Article  CAS  Google Scholar 

  21. Rajiv K, Pranita B, Bipul S. Trimorphic ethenzamide cocrystal: in vitro solubility and membrane efflux studies. Cryst Growth Des. 2018;18(8):4637–45.

    Article  Google Scholar 

  22. Ferretti V, Dalpiaz A, Bertolasi V, Ferraro L, Beggiato S, Spizzo F, et al. Indomethacin co-crystals and their parent mixtures: does the intestinal barrier recognize them differently? Mol Pharmaceut. 2015;12(5):1501–11.

    Article  CAS  Google Scholar 

  23. Zhang L, Kong D, Wang H, Jiao L, Zhao X, Song J, et al. Cocrystal of apixaban–quercetin: improving solubility and bioavailability of drug combination of two poorly soluble drugs. Molecules. 2021;26(9):2677–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren S, Jiao L, Yang S, Zhang L, Song J, Yu H, et al. A novel co-crystal of bexarotene and ligustrazine improves pharmacokinetics and tissue distribution of bexarotene in SD rats. Pharmaceutics. 2020;12(10):906–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang S, Xue Q, Xu J, Ruan S, Cai T. Simultaneously improving the physicochemical properties, dissolution performance, and bioavailability of apigenin and daidzein by co-crystallization with theophylline. J Pharm Sci. 2019;108(9):2982–93.

    Article  CAS  PubMed  Google Scholar 

  26. Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm. 2007;4(3):301–9.

    Article  CAS  PubMed  Google Scholar 

  27. Chan OH, Stewart BH. Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov Today. 1996;11(1):461–73.

    Article  Google Scholar 

  28. Rimmington F. Pharmacokinetics and pharmacodynamics. South Afr J Anaesth. 2020;26(6):S153–6.

    Article  Google Scholar 

  29. Han C, Davis CB, Wang B. Evaluation of drug candidates for preclinical development: pharmacokinetics, metabolism, pharmaceutics, and toxicology. New Jersey: John Wiley & Sons, Inc.; 2010.

    Google Scholar 

  30. Couillaud BM, Espeau P, Mignet N, Corvis Y. State of the art of pharmaceutical solid forms: from crystal property issues to nanocrystals formulation. ChemMedChem. 2019;14(1):8–23.

    Article  CAS  PubMed  Google Scholar 

  31. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharmaceut. 2011;419(1–2):1–11.

    Article  CAS  Google Scholar 

  32. Tan J, Liu J, Ran L. A review of pharmaceutical nano-cocrystals: a novel strategy to improve the chemical and physical properties for poorly soluble drugs. Crystals. 2021;11(5):463–76.

    Article  CAS  Google Scholar 

  33. Vemuri VD, Lankalapalli S. Insight into concept and progress on pharmaceutical co-crystals: an overview. Indian J Pharm Educ. 2019;53(4):S522–38.

    Article  CAS  Google Scholar 

  34. Roy P, Ghosh A. Progress on cocrystallization of poorly soluble NME’s in the last decade. CrystEngComm. 2020;22(42):6958–74.

    Article  CAS  Google Scholar 

  35. Nugrahani I, Jessica MA. Amino acids as the potential co-former for co-crystal development: a review. Molecules. 2021;26(11):3279–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mahmoudabadi SZ, Pazuki G. Investigation of COSMO-SAC model for solubility and cocrystal formation of pharmaceutical compounds. Sci Rep. 2020;10(1):1–14.

    Article  Google Scholar 

  38. Drozd KV, Manin AN, Voronin AP, Boycov DE, Churakov AV, Perlovich GL. A combined experimental and theoretical study of miconazole salts and cocrystals: crystal structures, DFT computations, formation thermodynamics and solubility improvement. Phys Chem Chem Phys. 2021;23(21):12456–70.

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki Y, Muangnoi C, Thaweesest W, Teerawonganan P, Bhuket PRN, Titapiwatanakun V, et al. Exploring novel cocrystalline forms of oxyresveratrol to enhance aqueous solubility and permeability across a cell monolayer. Biol Pharm Bull. 2019;42(6):1004–12.

    Article  CAS  PubMed  Google Scholar 

  40. Li X, Yu G, Chen X, He L, Zhou Z, Ren Z. Investigating the solubilization effect of oxcarbazepine by forming cocrystals. CrystEngComm. 2019;21(32):4718–29.

    Article  CAS  Google Scholar 

  41. Surov AO, Vasilev NA, Voronin AP, Churakov AV, Emmerling F, Perlovich GL. Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance. CrystEngComm. 2020;22(25):4238–49.

    Article  CAS  Google Scholar 

  42. Kim H, Jang S, Kim IW. Enhanced dissolution of naproxen by combining cocrystallization and eutectic formation. Pharmaceutics. 2021;13(5):618–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR. Cocrystals of hydrochlorothiazide: solubility and diffusion/permeability enhancements through drug–conformer interactions. Mol Pharm. 2015;12(5):1615–22.

    Article  CAS  PubMed  Google Scholar 

  44. Seo J-W, Hwang K-M, Lee S-H, Kim D-W, Park E-S. Preparation and characterization of adefovir dipivoxil-stearic acid cocrystal with enhanced physicochemical properties. Pharm Dev Technol. 2017;3(9):1–30.

    Google Scholar 

  45. Dai X, Li S, Chen J, Lu T. Improving the membrane permeability of 5-fluorouracil via cocrystallization. Cryst Growth Des. 2016;16(8):4430–8.

    Article  CAS  Google Scholar 

  46. Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. BioImpacts. 2018;8(4):305–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang Y, Zhang B, Gao Y, Zhang J, Shi L. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J Pharm Sci. 2014;103(8):2330–7.

    Article  CAS  PubMed  Google Scholar 

  48. Weyna DR, Cheney ML, Shan N, Hanna M, Zaworotko MJ, Sava V, et al. Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol Pharmaceut. 2012;9(7):2094–102.

    Article  CAS  Google Scholar 

  49. Lin J, Lu A. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev. 1997;49(4):403–49.

    CAS  PubMed  Google Scholar 

  50. Modi NB. Pharmacokinetics and metabolism in drug discovery and preclinical development. In: Pharmacokinetics in Drug Discovery and Development. CRC Press; 2002. pp. 57–71.

  51. Haneef J, Markad D, Chadha R. Interaction map driven cocrystallization of ambrisentan: structural and biopharmaceutical evaluation. Cryst Growth Des. 2020;20(7):4612–20.

    Article  CAS  Google Scholar 

  52. Zhu B, Zhang Q, Wang J, Mei X. Cocrystals of baicalein with higher solubility and enhanced bioavailability. Cryst Growth Des. 2017;17(4):1893–901.

    Article  CAS  Google Scholar 

  53. Goyal P, Rani D, Chadha R. Crystal engineering: a remedy to tailor the biopharmaceutical aspects of glibenclamide. Cryst Growth Des. 2017;18(1):105–18.

    Article  Google Scholar 

  54. Chen Y, Li L, Yao J, Ma Y, Chen J, Lu T. Improving the solubility and bioavailability of apixaban via apixaban–oxalic acid cocrystal. Cryst Growth Des. 2016;16(5):2923–30.

    Article  CAS  Google Scholar 

  55. Suresh K, Mannava CMK, Nangia A. Cocrystals and alloys of nitazoxanide: enhanced pharmacokinetics. Chem Commun. 2016;52(22):4223–6.

    Article  CAS  Google Scholar 

  56. Corner PA, Berry DJ, McCabe JF, Barbas R, Prohens R, Du H, et al. Property prediction and pharmacokinetic evaluation of mixed stoichiometry cocrystals of zafirlukast, a drug delivery case study. CrystEngComm. 2018;20(10):1346–51.

    Article  CAS  Google Scholar 

  57. Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci. 2011;100(6):2172–81.

    Article  CAS  PubMed  Google Scholar 

  58. Stanton MK, Kelly RC, Colletti A, Kiang YH, Langley M, Munson EJ, et al. Improved pharmacokinetics of AMG 517 through co-crystallization. Part 1: comparison of two acids with corresponding amide co-crystals. J Pharm Sci. 2010;99(9):3769–78.

    Article  CAS  PubMed  Google Scholar 

  59. Vasisht K, Chadha K, Karan M, Bhalla Y, Chadha R, Khullar S, et al. Cocrystals of hesperetin: structural, pharmacokinetic, and pharmacodynamic evaluation. Cryst Growth Des. 2017;17(5):2386–405.

    Article  Google Scholar 

  60. Xue N, Jia Y, Li C, He B, Yang C, Wang J. Characterizations and assays of alpha-glucosidase inhibition activity on gallic acid cocrystals: can the cocrystals be defined as a new chemical entity during binding with the alpha-glucosidase? Molecules. 2020;25(5):1163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vasisht K, Chadha K, Karan M, Bhalla Y, Jena AK, Chadha R. Enhancing biopharmaceutical parameters of bioflavonoid quercetin by cocrystallization. CrystEngComm. 2016;18(8):1403–15.

    Article  CAS  Google Scholar 

  62. Yu Y, Yu M, Wang L, Li Y, Wu Z, Yan C. A supramolecular adduct of tegafur and syringic acid: the first tegafur-nutraceutical cocrystal with perfected in vitro and in vivo characteristics as well as synergized anticancer activities. New J Chem. 2020;44(37):15994–6005.

    Article  CAS  Google Scholar 

  63. Tomar S, Chakraborti S, Jindal A, Grewal MK, Chadha R. Cocrystals of diacerein: towards the development of improved biopharmaceutical parameters. Int J Pharmaceut. 2019;574(9–10):118942.

    Google Scholar 

  64. Wang L, Wang L, Yu Y, Li Y, Wu Z, Yan C. Cocrystallization of 5-fluorouracil and l-phenylalanine: the first zwitterionic cocrystal of 5-fluorouracil with amino acid exhibiting perfect in vitro/vivo pharmaceutical properties. CrystEngComm. 2020;22(30):5010–21.

    Article  CAS  Google Scholar 

  65. Yu Y, Niu Y, Wang L, Li Y, Wu Z, Yan C. Supramolecular self-assembly and perfected in vitro/vivo property of 5-fluorouracil and ferulic acid on the strength of double optimized strategy: the first 5-fluorouracial-phenolic acid nutraceutical cocrystal with synergistic antitumor efficacy. Analyst. 2021;146(8):2506–19.

    Article  CAS  PubMed  Google Scholar 

  66. Yu Y, Wang L, Bu F, Wang L, Li Y, Wang C, et al. The supramolecular self-assembly of 5-fluorouracil and caffeic acid through cocrystallization strategy opens up a new way for the development of synergistic antitumor pharmaceutical cocrystal. CrystEngComm. 2020;22(45):7992–8006.

    Article  CAS  Google Scholar 

  67. Xu D, Zhang G, Zhang T, Jin B, Ma C. Pharmacokinetic comparisons of naringenin and naringenin-nicotinamide cocrystal in rats by LC-MS/MS. J Anal Methods Chem. 2020;2020(10):1–10.

    Google Scholar 

  68. Wasim M, Mannan A, Asad MHHB, Amirzada MI, Shafique M, Hussain I. Fabrication of carbamazepine cocrystals: characterization, in vitro and comparative in vivo evaluation. Biomed Res Int. 2021;2021(4):1–9.

    Article  Google Scholar 

  69. Wang L, Yu Y, Jiang F, Li Y, Wu Z, Yan C. The first zwitterionic cocrystal of indomethacin with amino acid showing optimized physicochemical properties as well as accelerated absorption and slowed elimination in vivo. New J Chem. 2020;44(10):3930–9.

    Article  CAS  Google Scholar 

  70. Thimmasetty J, Ghosh T, Nayak NS, Raheem A. Oral bioavailability enhancement of paliperidone by the use of cocrystalization and precipitation inhibition. J Pharm Innov. 2021;16(1):160–9.

    Article  Google Scholar 

  71. Soliman II, Kandil SM, Abdou EM. Gabapentin–saccharin co-crystals with enhanced physicochemical properties and in vivo absorption formulated as oro-dispersible tablets. Pharm Dev Technol. 2020;25(2):227–36.

    Article  CAS  PubMed  Google Scholar 

  72. Pi J, Wang S, Li W, Kebebe D, Zhang Y, Zhang B, et al. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J Pharm Sci. 2019;14(2):154–64.

    Article  PubMed  Google Scholar 

  73. Li L, Yin X, Diao K. Improving the solubility and bioavailability of anti-hepatitis B drug PEC via PEC–fumaric acid cocrystal. RSC Adv. 2020;10(59):36125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fatima K, Bukhari NI, Latif S, Afzal H, Hussain A, Shamim R, et al. Amelioration of physicochemical, pharmaceutical, and pharmacokinetic properties of lornoxicam by cocrystallization with a novel coformer. Drug Dev Ind Pharm. 2021;47(3):498–508.

    Article  CAS  PubMed  Google Scholar 

  75. Cui W, He Z, Zhang Y, Fan Q, Feng N. Naringenin cocrystals prepared by solution crystallization method for improving bioavailability and anti-hyperlipidemia effects. AAPS PharmSciTech. 2019;20(3):1–12.

    Article  CAS  Google Scholar 

  76. Lin J, Sahakian DC, De Morais SMF, Xu JJ, Polzer RJ, Winter SM. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr Top Med Chem. 2003;3(10):1125–54.

    Article  PubMed  Google Scholar 

  77. Caldwell J, Gardner I, Swales N. An introduction to drug disposition: the basic principles of absorption, distribution, metabolism, and excretion. Toxicol Pathol. 1995;23(2):102–14.

    Article  CAS  PubMed  Google Scholar 

  78. Stevens JC, Shipley LA, Cashman JR, Vandenbranden M, Wrighton SA. Comparison of human and rhesus monkey in vitro phase I and phase II hepatic drug metabolism activities. Drug Metab Dispos. 1993;21(5):753–60.

    CAS  PubMed  Google Scholar 

  79. Wang H, Li S, Liu L, Wang J, Wang Y, Guo W. Interactions between dipfluzine-based complexes and cytochrome p450 enzymes: information on salt, cocrystal, and salt cocrystal complexes. Environ Toxicol Phar. 2020;80(57):103487.

    Article  CAS  Google Scholar 

  80. Li C, Du P, Zhou M, Yang L, Zhang H, Wang J, et al. Spectroscopic methodology and molecular docking studies on changes in binding interaction of felodipine with bovine serum albumin induced by cocrystallization with β-resorcylic acid. Chem Pharm Bull. 2020;68(10):946–53.

    Article  CAS  Google Scholar 

  81. Lin Y, Yang H, Yang C, Wang J. Preparation, characterization, and evaluation of dipfluzine–benzoic acid co-crystals with improved physicochemical properties. Pharm Res. 2014;31(3):566–78.

    Article  CAS  PubMed  Google Scholar 

  82. Pan X, Zheng Y, Chen R, Qiu S, Chen Z, Rao W, et al. Cocrystal of sulfamethazine and p-aminobenzoic acid: structural establishment and enhanced antibacterial properties. Cryst Growth Des. 2019;19(4):2455–60.

    Article  CAS  Google Scholar 

  83. Saha R, Sengupta S, Dey SK, Steele IM, Bhattacharyya A, Biswas S, et al. A pharmaceutical cocrystal with potential anticancer activity. RSC Adv. 2014;4(90):49070–8.

    Article  CAS  Google Scholar 

  84. Chadha R, Bhalla Y, Nandan A, Chadha K, Karan M. Chrysin cocrystals: characterization and evaluation. J Pharmaceut Biomed. 2017;134:361–71.

    Article  CAS  Google Scholar 

  85. Sathya P, Vidyalaksmi Y, Pugazhendhi S, Gopalakrishnan R. Benzotriazole p-hydroxybenzoic acid: physicochemical and biological evaluation of an organic cocrystal. Mater Res Innov. 2016;21(3):182–8.

    Article  Google Scholar 

  86. Abosede OO, Gordon AT, Dembaremba TO, Lorentino CMA, Frota HF, Santos ALS, et al. Trimesic acid–theophylline and isopthalic acid–caffeine cocrystals: synthesis, characterization, solubility, molecular docking, and antimicrobial activity. Cryst Growth Des. 2020;20(5):3510–22.

    Article  CAS  Google Scholar 

  87. Shemchuk O, d’Agostino S, Fiore C, Sambri V, Zannoli S, Grepioni F, et al. Natural antimicrobials meet a synthetic antibiotic: carvacrol/thymol and ciprofloxacin cocrystals as a promising solid-state route to activity enhancement. Cryst Growth Des. 2020;20(10):6796–803.

    Article  CAS  Google Scholar 

  88. Jubeen F, Liaqat A, Amjad F, Sultan M, Iqbal SZ, Sajid I, et al. Synthesis of 5-fluorouracil cocrystals with novel organic acids as coformers and anticancer evaluation against HCT-116 colorectal cell lines. Cryst Growth Des. 2020;20(4):2406–14.

    Article  CAS  Google Scholar 

  89. Nicolov M, Ghiulai RM, Voicu M, Mioc M, Duse AO, Roman R, et al. Cocrystal formation of betulinic acid and ascorbic acid: synthesis, physico-chemical assessment, antioxidant, and antiproliferative activity. Front Chem. 2019;7:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Serrano DR, Persoons T, D’Arcy DM, Galiana C, Dea-Ayuela MA, Healy AM. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals. Eur J Pharm Sci. 2016;89:125–36.

    Article  CAS  PubMed  Google Scholar 

  91. Arafa MF, El-Gizawy SA, Osman MA, El Maghraby GM. Co-crystallization for enhanced dissolution rate of nateglinide: in vitro and in vivo evaluation. J Drug Deliv Sci Tec. 2017;38:9–17.

    Article  CAS  Google Scholar 

  92. Gautam MK, Besan M, Pandit D, Mandal S, Chadha R. Cocrystal of 5-fluorouracil: characterization and evaluation of biopharmaceutical parameters. AAPS PharmSciTech. 2019;20(4):149–65.

    Article  PubMed  Google Scholar 

  93. Kanakaraju K, Lavanya V, Nangia A. Temozolomide cocrystals exhibit drug sensitivity in glioblastoma cells. P Natl A Sci India A. 2014;84(2):321–30.

    Google Scholar 

  94. Abidi SSA, Azim Y, Khan SN, Khan AU. Sulfaguanidine cocrystals: synthesis, structural characterization and their antibacterial and hemolytic analysis. J Pharmaceut Biomed. 2018;149:351–7.

    Article  CAS  Google Scholar 

  95. Varma GYN, Kummari G, Paik P, Kalle AM. Celecoxib potentiates antibiotic uptake by altering membrane potential and permeability in Staphylococcus aureus. J Antimicrob Chemoth. 2019;74(12):3462–72.

    Article  CAS  Google Scholar 

  96. Tabassum N, Varras PC, Arshad F, Choudhary MI, Yousuf S. Biological activity tuning of antibacterial urotropine via co-crystallization: synthesis, biological activity evaluation and computational insight. CrystEngComm. 2020;22(20):3439–50.

    Article  CAS  Google Scholar 

  97. Navarro VJ, Senior JR. Drug-related hepatotoxicity. New Engl J Med. 2006;354(7):731–9.

    Article  CAS  PubMed  Google Scholar 

  98. Pandit A, Sachdeva T, Bafna P. Drug-induced hepatotoxicity: a review. J Appl Pharm Sci. 2012;2(5):233–43.

    Google Scholar 

  99. Yew WW, Leung CC. Antituberculosis drugs and hepatotoxicity. Respirology. 2006;11(6):699–707.

    Article  PubMed  Google Scholar 

  100. Bruno V, Grazia A, Mariella SC, Giovanna C, Leakos M, Daniele S, et al. Drug-induced hepatotoxicity in cancer patients-implication for treatment. Expert Opin Drug Saf. 2016;15(9):1219–38.

    Article  Google Scholar 

  101. El-Sayyad HI, Ismail MF, Shalaby FM, Abou-El-Magd RF, Gaur RL, Fernando A, et al. Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-fu) on the liver of male albino rats. Int J Biol Sci. 2009;5(5):466–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meunier L, Larrey D. Recent advances in hepatotoxicity of non steroidal anti-inflammatory drugs. Ann Hepatol. 2018;17(2):187–91.

    Article  CAS  PubMed  Google Scholar 

  103. Unzueta A, Vargas HE. Nonsteroidal anti-inflammatory drug–induced hepatoxicity. Clin Liver Dis. 2013;17(4):643–56.

    Article  PubMed  Google Scholar 

  104. Teoh NC, Farrell GC. Hepatotoxicity associated with non-steroidal anti-inflammatory drugs. Clin Liver Dis. 2003;7(2):401–13.

    Article  PubMed  Google Scholar 

  105. Liu F, Wang L, Li Y, Wu Z, Yan C. Protective effects of quercetin against pyrazinamide induced hepatotoxicity via a cocrystallization strategy of complementary advantages. Cryst Growth Des. 2018;18(7):3729–33.

    Article  CAS  Google Scholar 

  106. Yadav B, Balasubramanian S, Chavan RB, Thipparaboina R, Naidu VGM, Shastri NR. Hepatoprotective cocrystals and salts of riluzole: prediction, synthesis, solid state characterization, and evaluation. Cryst Growth Des. 2018;18(2):1047–61.

    Article  CAS  Google Scholar 

  107. Yadav B, Gunnam A, Thipparaboina R, Nangia AK, Shastri NR. Hepatoprotective cocrystals of isoniazid: synthesis, solid state characterization, and hepatotoxicity studies. Cryst Growth Des. 2019;19(9):5161–72.

    Article  CAS  Google Scholar 

  108. Martin F, Pop M, Kacso I, Grosu IG, Miclăuş M, Vodnar D, et al. Ketoconazole-p-aminobenzoic acid cocrystal: revival of an old drug by crystal engineering. Mol Pharmaceut. 2020;17(3):919–32.

    Article  CAS  Google Scholar 

  109. Liu F, Wang L, Yu M, Li Y, Wu Z, Yan C. A new cocrystal of isoniazid-quercetin with hepatoprotective effect: the design, structure, and in vitro/in vivo performance evaluation. Eur J Pharm Sci. 2020;144:105216.

    Article  PubMed  Google Scholar 

  110. Liu F, Jiang F, Li Y, Liu R, Wu Z, Yan C. Cocrystallization with syringic acid presents a new opportunity for effectively reducing the hepatotoxicity of isoniazid. Drug Dev Ind Pharm. 2020;46(6):988–95.

    Article  CAS  PubMed  Google Scholar 

  111. Horii I. The principle of safety evaluation in medicinal drug-how can toxicology contribute to drug discovery and development as a multidisciplinary science? J Toxicol Sci. 2016;41(Special):SP49-67.

    Article  PubMed  Google Scholar 

  112. Klaassen CD. Toxicology: the basic science of poisons. 7th & 8th Edition. New York: McGraw-Hill.; 2008.

  113. Muresan-Pop M, Chereches G, Borodi G, Fischer-Fodor E, Simon S. Structural characterization of 5-fluorouracil & piperazine new solid forms and evaluation of their antitumor activity. J Mol Struct. 2020;1207:127842.

    Article  CAS  Google Scholar 

  114. Rai SK, Gunnam A, Mannava M, Nangia AK. Improving the dissolution rate of anticancer drug dabrafenib. Cryst Growth Des. 2020;20(2):1035–46.

    Article  CAS  Google Scholar 

  115. Roy P, Ghosh A. Progress on cocrystallization of poorly soluble NME’s in the last decade. CrystEngComm. 2020;22(42):6958–74.

    Article  CAS  Google Scholar 

  116. Kovacich N, Candidate PD, Chavez B. Ertugliflozin (steglatro): a new option for SGLT2 inhibition. P & T. 2018;43(12):736–42.

    Google Scholar 

  117. Ayalasomayajula S, Langenickel T, Pal P, Boggarapu S, Sunkara G. Clinical pharmacokinetics of sacubitril/valsartan (LCZ696): a novel angiotensin receptor-neprilysin inhibitor. Clin Pharmacokinet. 2017;56(12):1461–78.

    Article  CAS  PubMed  Google Scholar 

  118. Cebrecos J, Carlson JD, Encina G, Lahjou M, Sans A, Sust M, et al. Celecoxib-tramadol co-crystal: a randomized 4-way crossover comparative bioavailability study. Clin Ther. 2021;43(6):1051–65.

    Article  CAS  PubMed  Google Scholar 

  119. Suresh Kumar S, Athimoolam S, Sridhar B. Structural, spectral, theoretical and anticancer studies on new co-crystal of the drug 5-fluorouracil. J Mol Struct. 2018;1173:951–8.

    Article  CAS  Google Scholar 

  120. Langford R, Morte A, Sust M, Cebrecos J, Vaqué A, Ortiz E, et al. Efficacy and safety of co-crystal of tramadol-celecoxib (CTC) in acute moderate-to-severe pain after abdominal hysterectomy: a randomized, double-blind, phase 3 trial (STARDOM2). Eur J Pain. 2022;00:1–14.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (2021–1-I2M-029).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Zhipeng Wang, Shiying Yang, Yang Lu, and Guanhua Du; writing—original draft preparation: Zhipeng Wang; literature review and collection: Yifei Xie and Mingchao Yu; review and editing: Shiying Yang, Yang Lu, and Guanhua Du. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Shiying Yang, Yang Lu or Guanhua Du.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xie, Y., Yu, M. et al. Recent Advances on the Biological Study of Pharmaceutical Cocrystals. AAPS PharmSciTech 23, 303 (2022). https://doi.org/10.1208/s12249-022-02451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02451-1

Keywords

Navigation