Skip to main content
Log in

Insights into the Role of Compendial/Biorelevant Media on the Supersaturation Behaviour of Drug Combination (Drug-Drug Interaction) and Precipitation Inhibition by Polymers

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Combination drug therapy (CDT) plays an immense role in the treatment of various diseases such as malaria, hypertension, cancer, HIV-AIDS, helminthiasis, and many more. However, in vitro drug-drug interaction (DDI) is not well reported for better efficacy of CDT. In DDI one drug may enhance the precipitation of other drugs thereby reducing the advantage of CDT. Herein, we report DDI in terms of in vitro precipitation of drugs with albendazole and mebendazole. This may be the first report to propensate the possibility of either drug precipitation in the combination. These drugs are categorized into BCS class II weak base and hence have tendency to precipitate in the gastrointestinal tract. The objective of this study is to find precipitation of drug combinations in different compendial and biorelevant media (deionized water, phosphate buffer pH 6.8, FaSSIF, and FeSSIF) and screening of the polymers for precipitation inhibition. Nine polymers were investigated at three different concentrations in terms of their drug-polymer solubility, in vitro precipitation behavior, induction time, SHC, and droplet size. Although, all the polymers inhibit the precipitation of drugs, the extent of precipitation inhibition for Soluplus is high. The obtained drug-polymer precipitates were filtered, dried, and analyzed for amorphous/partial amorphous form using polarised light microscopy (PLM), differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). The drug-polymer interaction was examined using Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) revealing the effect of polymers on drug precipitation. These insights may further be used in the formulation of CDT for helminthiasis management.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABZ:

Albendazole

MBZ:

Mebendazole

WHO:

World Health Organization

AMB:

Albendazole-mebendazole

DW:

Deionized water

PB:

Phosphate buffer pH 6.8

FaSSIF:

Fasted state simulated intestinal fluid

FeSSIF:

Fed state simulated intestinal fluid

PVA:

Polyvinyl alcohol

PVP K10:

Polyvinyl pyrolidone K10

PVP K30:

Polyvinyl pyrolidone K30

PVP K90:

Polyvinyl pyrolidone K90

PVP VA64:

Polyvinyl pyrolidone vinyl acetate

SDS:

Sodium dodecyl sulfate

SOL:

Soluplus

POLX:

Poloxamer/Pluronics F68

KOLLI:

Kolliphor/Solutol HS15

PIs:

Precipitation inhibitors

STH:

Soil-transmitted helminths

PLM:

Polarized light microscopy

DLS:

Dynamic light scattering

FTIR:

Fourier transform infrared spectroscopy

NMR:

Nuclear magnetic resonance

References

  1. Prasad D, Chauhan H, Atef E. Role of molecular interactions for synergistic precipitation inhibition of poorly soluble drug in supersaturated drug–polymer–polymer ternary solution. Mol Pharmaceutics. 2016;13:756–65. https://doi.org/10.1021/acs.molpharmaceut.5b00655.

    Article  CAS  Google Scholar 

  2. Guan J, Liu Q, Jin L, Xu H, Wu H, Zhang X, et al. Synergistic effect of Soluplus and hyaluronic acid on the supersaturation maintenance of lovastatin: the facilitated in vitro-in vivo performance and improved physical stability. Carbohydr Polym. 2019;222:114978. https://doi.org/10.1016/j.carbpol.2019.114978.

    Article  CAS  PubMed  Google Scholar 

  3. Figueirêdo CBM, Nadvorny D, de Medeiros Vieira ACQ, de Medeiros Schver GCR, Sobrinho JLS, Neto PJR, et al. Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. Eur J Pharm Sci. 2018;119:208–18. https://doi.org/10.1016/j.ejps.2018.04.024 (Elsevier).

    Article  CAS  PubMed  Google Scholar 

  4. Arca HÇ, Mosquera-Giraldo LI, Dahal D, Taylor LS, Edgar KJ. Multidrug, anti-HIV amorphous solid dispersions: nature and mechanisms of impacts of drugs on each other’s solution concentrations. Mol Pharmaceutics. 2017;14:3617–27. https://doi.org/10.1021/acs.molpharmaceut.7b00203.

    Article  CAS  Google Scholar 

  5. Trasi NS, Taylor LS. Thermodynamics of highly supersaturated aqueous solutions of poorly water-soluble drugs-impact of a second drug on the solution phase behavior and implications for combination products. J Pharm Sci. 2015;104:2583–93. https://doi.org/10.1002/jps.24528.

    Article  CAS  PubMed  Google Scholar 

  6. Trasi NS, Taylor LS. Dissolution performance of binary amorphous drug combinations–impact of a second drug on the maximum achievable supersaturation. Int J Pharm. 2015;496:282–90. https://doi.org/10.1016/j.ijpharm.2015.10.026.

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization Model List of Essential Medicines – 22nd List. 2021

  8. Guideline: preventive chemotherapy to control soil-transmitted helminth infections in at-risk population groups. 2017

  9. WHO. Schistosomiasis and soil-transmitted helminthiases: progress report, Weekly Epidemiological Record. World Health Organization; (2020) 96:585–95

  10. WHO. Weekly Epidemiological Record, 2021, vol. 96, 48. Weekly Epidemiological Record. World Health Organization; 96:585–96.

  11. Al Amin ASM WR. Helminthiasis. tatPearls Publishing. 2022.

  12. Namwanje H, Kabatereine NB, Olsen A. Efficacy of single and double doses of albendazole and mebendazole alone and in combination in the treatment of Trichuris trichiura in school-age children in Uganda Trans R Soc Trop Med Hyg. Royal Society of Tropical Medicine and Hygiene. 2011;105:586–90. https://doi.org/10.1016/j.trstmh.2011.07.009.

    Article  CAS  Google Scholar 

  13. Cowan N, Vargas M, Keiser J. In vitro and in vivo drug interaction study of two lead combinations, oxantel pamoate plus albendazole and albendazole plus mebendazole, for the treatment of soil-transmitted helminthiasis. Antimicrob Agents Chemother. 2016;60:6127–33. https://doi.org/10.1128/AAC.01217-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keiser J, Tritten L, Adelfio R, Vargas M. Effect of combinations of marketed human anthelmintic drugs against Trichuris muris in vitro and in vivo. Parasit & Vectors. 2012;5:1–7. https://doi.org/10.1186/1756-3305-5-292.

    Article  CAS  Google Scholar 

  15. Speich B, Moser W, Ali SM, Ame SM, Albonico M, Hattendorf J, et al. Efficacy and reinfection with soil-transmitted helminths 18-weeks post-treatment with albendazole-ivermectin, albendazole-mebendazole, albendazole-oxantel pamoate and mebendazole. Parasit & Vectors. 2016;9:1–10. https://doi.org/10.1186/s13071-016-1406-8.

    Article  CAS  Google Scholar 

  16. Ghanbarzadeh S, Khalili A, Jouyban A, Emami S, Javadzadeh Y, Solhi M, et al. Dramatic improvement in dissolution rate of albendazole by a simple, one-step, industrially scalable technique. Res Pharm Sci. 2016;11:435. https://doi.org/10.4103/1735-5362.194868.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carlert S, Åkesson P, Jerndal G, Lindfors L, Lennernäs H, Abrahamsson B. In vivo dog intestinal precipitation of mebendazole: a basic BCS class II drug. Mol Pharmaceutics. 2012;9:2903–11. https://doi.org/10.1021/mp300224h.

    Article  CAS  Google Scholar 

  18. García-Rodriguez JJ, de la Torre-Iglesias PM, Vegas-Sánchez MC, Torrado-Durán S, Bolás-Fernández F, Torrado-Santiago S. Changed crystallinity of mebendazole solid dispersion: improved anthelmintic activity. Int J Pharm. 2011;403:23–8. https://doi.org/10.1016/j.ijpharm.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  19. Joshi P, Mallepogu P, Kaur H, Singh R, Sodhi I, Samal SK, et al. Explicating the molecular level drug-polymer interactions at the interface of supersaturated solution of the model drug: albendazole. Eur J Pharm Sci. 2021;167:106014. https://doi.org/10.1016/j.ejps.2021.106014.

    Article  CAS  PubMed  Google Scholar 

  20. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25:1663–76. https://doi.org/10.1007/s11095-008-9569-4.

    Article  CAS  PubMed  Google Scholar 

  21. Sodhi I, Sangamwar AT. Microarray plate method for estimation of precipitation kinetics of celecoxib under biorelevant conditions and precipitate characterization. Mol Pharmaceutics. 2018;15:2423–36. https://doi.org/10.1021/acs.molpharmaceut.8b00267.

    Article  CAS  Google Scholar 

  22. Chavan RB, Thipparaboina R, Kumar D, Shastri NR. Evaluation of the inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Adv. 2016;6:77569–76. https://doi.org/10.1080/03639045.2018.1503295.

    Article  CAS  Google Scholar 

  23. Pas T, Struyf A, Vergauwen B, Van den Mooter G. Ability of gelatin and BSA to stabilize the supersaturated state of poorly soluble drugs. E Eu J Pharm Biopharm. 2018;131:211–23. https://doi.org/10.1016/j.ejpb.2018.08.003.

    Article  CAS  Google Scholar 

  24. Jackson MJ, Kestur US, Hussain MA, Taylor LS. Characterization of supersaturated danazol solutions - impact of polymers on solution properties and phase transitions. Pharm Res. 2016;33:1276–88. https://doi.org/10.1007/s11095-016-1871-y.

    Article  CAS  PubMed  Google Scholar 

  25. Brough C, Miller DA, Keen JM, Kucera SA, Lubda D, Williams RO 3rd. Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (part 1). AAPS PharmSciTech. 2016;17:167–79. https://doi.org/10.1208/s12249-015-0458-y.

    Article  CAS  PubMed  Google Scholar 

  26. Shi N-Q, Lai H-W, Zhang Y, Feng B, Xiao X, Zhang H-M, et al. On the inherent properties of Soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology. Pharm Dev Technol. 2018;23:573–86. https://doi.org/10.1080/10837450.2016.1256409.

    Article  CAS  PubMed  Google Scholar 

  27. Ducheyne P, Healy KE, Hutmacher DW, Grainger DW, Kirkpatrick CJ. Comprehensive biomaterials [Internet]. Elsevier Science; 2015.

  28. Glöckner G. Gradient polymer chromatography: liquid chromatography. In: Wilson ID, editor. Encyclopedia of Separation Science. Oxford: Academic Press; 2000. p. 2975–84. https://doi.org/10.1016/B0-12-226770-2/01851-2

  29. Joshi P, Sangamwar AT. Stabilizing supersaturated drug-delivery system through mechanism of nucleation and crystal growth inhibition of drugs. Ther Deliv. 2018;9:873–85. https://doi.org/10.4155/tde-2018-0031.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8. https://doi.org/10.1023/a:1012167410376.

    Article  CAS  PubMed  Google Scholar 

  31. Dai W-G, Dong LC, Li S, Deng Z. Combination of Pluronic/Vitamin E TPGS as a potential inhibitor of drug precipitation. Int J Pharm. 2008;355:31–7. https://doi.org/10.1016/j.ijpharm.2007.12.015.

    Article  CAS  PubMed  Google Scholar 

  32. Brits M, Liebenberg W, de Villiers MM. Characterization of polymorph transformations that decrease the stability of tablets containing the WHO essential drug mebendazole. Pharm Sci. 2010;99:1138–51. https://doi.org/10.1002/jps.21899.

    Article  CAS  Google Scholar 

  33. Raval MK, Vaghela PD, Vachhani AN, Sheth NR. Role of excipients in the crystallization of albendazole. Adv Powder Technol. 2015;26:1102–15. https://doi.org/10.1016/j.apt.2015.05.006.

    Article  CAS  Google Scholar 

  34. Koradia KD, Parikh RH, Koradia HD. Albendazole nanocrystals: optimization, spectroscopic, thermal and anthelmintic studies. J Drug Deliv Sci Technol. 2018;43:369–78. https://doi.org/10.1016/j.jddst.2017.11.003.

    Article  CAS  Google Scholar 

  35. Aboul-Enein HY, Bunaciu AA, Fleschin S. Analysis of mebendazole polymorphs by Fourier transform IR spectrometry using chemometric methods. Biopolymers. 2002;67:56–60. https://doi.org/10.1002/bip.10041.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Director, NIPER S.A.S. Nagar, for providing the necessary facilities and infrastructure.

Funding

The authors are grateful to NIPER, SAS Nagar for providing financial support for this project.

Author information

Authors and Affiliations

Authors

Contributions

Prachi Joshi: conceptualization, data curation, formal analysis, investigation, writing—original draft, and writing—review and editing.

Abhay T Sangamwar: conceptualization, data curation, formal analysis, project administration, validation, and writing—review and editing.

Corresponding author

Correspondence to Abhay T. Sangamwar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1701 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, P., Sangamwar, A.T. Insights into the Role of Compendial/Biorelevant Media on the Supersaturation Behaviour of Drug Combination (Drug-Drug Interaction) and Precipitation Inhibition by Polymers. AAPS PharmSciTech 23, 300 (2022). https://doi.org/10.1208/s12249-022-02448-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02448-w

Keywords

Navigation