Skip to main content
Log in

Self-Emulsifying Drug Delivery System Enhances Tissue Distribution of Cinnamaldehyde by Altering the Properties of the Mucus Layer

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Oral delivery is considered the preferred route of administration due to its convenience and favorable compliance. However, this delivery often faces difficulties, such as poor solubility, limited absorption, and undesirable stability, especially for some volatile oils. The aim of this study was to develop self-emulsifying drug delivery systems (SEDDS) containing cinnamaldehyde (CA) to overcome these shortcomings. The CA-SEDDS were spherical and smooth with an average size of 14.96 ± 0.18 nm. Differential scanning calorimetry (DSC) and attenuated total reflection by Fourier transform infrared (ATR-FTIR) showed that CA has been successfully loaded into SEDDS. The accumulative release of CA-SEDDS (73.39%) was approximately 2.14-fold that of free CA when using simulated intestinal fluid as the release medium. A scanning electron microscope was used to observe the mucus network structure. Rheological tests found that CA-SEDDS can appropriately enhance the viscosity of the mucus system. We found from tissue distribution studies that CA was more widely distributed in various tissues in the CA-SEDDS group compared to the free CA group. The cinnamaldehyde and cinnamon acid also accumulated more in various tissues in the CA-SEDDS group than in the free CA group, especially in the kidney. These findings hinted that SEDDS exhibited lower irritation, good release, and penetration, which demonstrated great potential for utilizing CA. Our research supports the rational implications of SEDDS in delivering similar volatile substances by improving the solubility, mucus penetration, and stability, resulting in excellent clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Clapp PW, Lavrich KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am J Physiol-Lung C. 2019;316(3):L470–86.

    Article  CAS  Google Scholar 

  2. Wu C, Zhuang Y, Jiang S, Tian F, Teng Y, Chen X, et al. Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. Int J Biochem Cell Biol. 2017;84:58–74.

    Article  CAS  PubMed  Google Scholar 

  3. Kostrzewa T, Przychodzen P, Gorska-Ponikowska M, Kuban-Jankowska A. Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Res. 2019;39(2):745–9.

    Article  CAS  PubMed  Google Scholar 

  4. Matsuda H, Matsuda R, Fukuda S, Shiomoto H, Kubo M. Anti-thrombic actions of 70% methanolic extract and cinnamic aldehyde from cinnamomi cortex. Chem Pharm Bull (Tokyo). 1987;35(3):1275–80.

    Article  CAS  Google Scholar 

  5. Li XQ, Liu XX, Wang XY, Xie YH, Yang Q, Liu XX, et al. Cinnamaldehyde derivatives inhibit coxsackievirus B3-induced viral myocarditis. Biomol Ther (Seoul). 2017;25(3):279–87.

    Article  CAS  Google Scholar 

  6. Chu XQ, Huang J, Li ZG, Li Q, Cao JJ, Jiang JQ, et al. On the structure and transdermal profile of liquid crystals based on phytantriol. Curr Drug Deliv. 2018;15(10):1439–48.

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Yao JH, Shu YT, Dong J, Gu W, Xu F, et al. Comparative study of penetration-enhancing effect in vitro of cinnamon oil and cinnamaldehyde on ibuprofen. Zhongguo Zhong Yao Za Zhi. 2018;43(17):3493–7.

    PubMed  Google Scholar 

  8. Sperandio B, Fischer N, Sansonetti PJ. Mucosal physical and chemical innate barriers: lessons from microbial evasion strategies. Semin Immunol. 2015;27(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  9. Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. 2018;124:3–15.

    Article  CAS  PubMed  Google Scholar 

  10. Rossi S, Vigani B, Bonferoni MC, Sandri G, Caramella C, Ferrari F. Rheological analysis and mucoadhesion: a 30 year-old and still active combination. J Pharm Biomed Anal. 2018;156:232–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wessler T, Chen A, McKinley SA, Cone R, Forest MG, Lai SK. Using computational modeling to optimize the design of antibodies that trap viruses in mucus. Acs Infectious Diseases. 2016;2(1):82–92.

    Article  CAS  PubMed  Google Scholar 

  12. Fu Q, Li G, Wang C, Wang Y, Li Q, Hao J, et al. Profiling and structural characterization of high neu5gc or sulfate-containing O-glycans from hyla rabbit intestinal mucin. Molecules. 2019;24(7).

  13. Crater JS, Carrier RL. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci. 2010;10(12):1473–83.

    Article  CAS  PubMed  Google Scholar 

  14. Liu L, Tian C, Dong B, Xia M, Cai Y, Hu R, et al. Models to evaluate the barrier properties of mucus during drug diffusion. Int J Pharm. 2021;599: 120415.

    Article  CAS  PubMed  Google Scholar 

  15. Khutoryanskiy VV. Beyond PEGylation: alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv Drug Deliv Rev. 2018;124:140–9.

    Article  CAS  PubMed  Google Scholar 

  16. Han F, Peng L, Zhang X, Yang S, Han J. Research progress on intestinal mucus barrier function. Chinese Journal of Animal Nutrition. 2018.

  17. Murgia X, Pawelzyk P, Schaefer UF, Wagner C, Willenbacher N, Lehr CM. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromol. 2016;17(4):1536–42.

    Article  CAS  Google Scholar 

  18. Han Y, Gao Z, Chen L, Kang L, Huang W, Jin M, et al. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B. 2019;9(5):902–22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lieleg O, Ribbeck K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 2011;21(9):543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–18.

    Article  CAS  PubMed  Google Scholar 

  21. Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–64.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang JB, Lv Y, Wang B, Zhao S, Tan MQ, Lv GJ, et al. Influence of microemulsion-mucin interaction on the fate of microemulsions diffusing through pig gastric mucin solutions. Mol Pharm. 2015;12(3):695–705.

    Article  CAS  PubMed  Google Scholar 

  23. Hansson GC, Johansson MEV. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes. 2010;1(1):51–4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)–challenges and road ahead. Drug Deliv. 2015;22(6):675–90.

    Article  CAS  PubMed  Google Scholar 

  25. Yin YM, Cui FD, Mu CF, Choi MK, Kim JS, Chung SJ, et al. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release. 2009;140(2):86–94.

    Article  CAS  PubMed  Google Scholar 

  26. Kiss L, Walter FR, Bocsik A, Veszelka S, Oszsvari B, Puskas LG, et al. Kinetic analysis of the toxicity of pharmaceutical excipients cremophor EL and RH40 on endothelial and epithelial cells. J Pharm Sci-Us. 2013;102(4):1173–81.

    Article  CAS  Google Scholar 

  27. Liao H, Gao Y, Lian C, Zhang Y, Wang B, Yang Y, et al. Oral absorption and lymphatic transport of baicalein following drug-phospholipid complex incorporation in self-microemulsifying drug delivery systems. Int J Nanomedicine. 2019;14:7291–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel D, Sawant KK. Self micro-emulsifying drug delivery system: formulation development and biopharmaceutical evaluation of lipophilic drugs. Curr Drug Deliv. 2009;6(4):419–24.

    Article  CAS  PubMed  Google Scholar 

  29. Li F, Hu R, Wang B, Gui Y, Cheng G, Gao S, et al. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake. Acta Pharm Sin B. 2017;7(3):353–60.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mahmood A, Bernkop-Schnurch A. SEDDS: a game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv Drug Deliv Rev. 2019;142:91–101.

    Article  CAS  PubMed  Google Scholar 

  31. Abdulkarim M, Sharma PK, Gumbleton M. Self-emulsifying drug delivery system: mucus permeation and innovative quantification technologies. Adv Drug Deliv Rev. 2019;142:62–74.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang JB, Lv Y, Zhao S, Wang B, Tan MQ, Xie HG, et al. Effect of lipolysis on drug release from Self-microemulsifying Drug Delivery Systems (SMEDDS) with different core/shell drug location. AAPS PharmSciTech. 2014;15(3):731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai Y, Liu L, Xia M, Tian C, Wu W, Dong B, et al. SEDDS facilitate cinnamaldehyde crossing the mucus barrier: the perspective of mucus and Caco-2/HT29 co-culture models. Int J Pharm. 2022;614: 121461.

    Article  CAS  PubMed  Google Scholar 

  34. Yan-Rong J, Zhen-Hai Z, Shao-Ying H, Xiao-Bin J. [Study on solidifying volatile oil of cinnamon with colloidal silicon dioxide SYLOID244FP]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2013;38(1).

  35. Cardona MI, Le Nguyen NM, Zaichik S, Aragon DM, Bernkop-Schnurch A. Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties. Int J Pharm. 2019;562:180–6.

    Article  CAS  PubMed  Google Scholar 

  36. Tian SJ, Bo XY. Comparison of Four Drying Methods in the Scanning Specimen Preparing for Biology and Medicine. LABORATORY RESEARCH AND EXPLORATION. 1999.

  37. Mehraj, Ahmad, Christos, Ritzoulis, Jianshe, Chen. Shear and extensional rheological characterisation of mucin solutions. Colloids and surfaces B, Biointerfaces. 2018.

  38. Floury J, Desrumaux A, Axelos MAV, Legrand J. Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocolloids. 2002;16(1):47–53.

    Article  CAS  Google Scholar 

  39. Pereira de Freitas LV, de Paula Terra G, de Souza Santos S, Sicupira LC, Silverio FO. Optimization and validation of liquid-liquid extraction with low-temperature purification (LLE-LTP) for determining fluopyram fungicide in water samples using HPLC-DAD. Anal Methods. 2022;14(30):2945–52.

  40. York ayrouz MD. Pharmacokinetic and pharmaceutic interaction between digoxin and Cremophor RH40<sup>*</sup>. Clin Pharmacol Ther. 2003.

  41. Warisnoicharoen W, Lansley AB, Lawrence MJ. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int J Pharm. 2000;198(1):7–27.

    Article  CAS  PubMed  Google Scholar 

  42. Ferreira PG, Lima CGD, Noronha LL, de Moraes MC, da Silva FD, Vicosa AL, et al. Development of a method for the quantification of clotrimazole and itraconazole and study of their stability in a new microemulsion for the treatment of sporotrichosis. Molecules. 2019;24(12).

  43. Wu HB. Process and mechanism of inclusion with cinnamaldehyde and its inclusive performance[D]. Guangdong University of Technology, 2011..

  44. Zhang L, Huang C, Xu Y, Huang H, Zhao H, Wang J, et al. Synthesis and characterization of antibacterial polylactic acid film incorporated with cinnamaldehyde inclusions for fruit packaging. Int J Biol Macromol. 2020;164:4547–55.

    Article  CAS  PubMed  Google Scholar 

  45. Cheirmadurai K, Thanikaivelan P, Murali R. Highly biocompatible collagen-Delonix regia seed polysaccharide hybrid scaffolds for antimicrobial wound dressing. Carbohydr Polym. 2016;137:584–93.

    Article  CAS  PubMed  Google Scholar 

  46. Gao P, Jiang Z, Luo Q, Mu C, Cui M, Yang X. Preparation and Evaluation of Self-emulsifying Drug Delivery System (SEDDS) of Cepharanthine. AAPS PharmSciTech. 2021;22(7):245.

    Article  PubMed  Google Scholar 

  47. Zhu R, Liu H, Liu C, Wang L, Ma R, Chen B, et al. Cinnamaldehyde in diabetes: a review of pharmacology, pharmacokinetics and safety. Pharmacol Res. 2017;122:78–89.

    Article  CAS  PubMed  Google Scholar 

  48. Nipun TS, Ashraful Islam SM. SEDDS of gliclazide: Preparation and characterization by in-vitro, ex-vivo and in-vivo techniques. Saudi Pharm J. 2014;22(4):343–8.

    Article  PubMed  Google Scholar 

  49. Simionato LD, Petrone L, Baldut M, Bonafede SL, Segall AI. Comparison between the dissolution profiles of nine meloxicam tablet brands commercially available in Buenos Aires. Argentina Saudi Pharm J. 2018;26(4):578–84.

    Article  PubMed  Google Scholar 

  50. Bakhteyar H, Cassone C, Kohan HG, Sani SN. Kinetic analysis of drug release from compounded slow-release capsules of liothyronine sodium (T3). Int J Pharm Compd. 2017;21(5):418–25.

    PubMed  Google Scholar 

  51. Wessler T, Chen A, Mckinley SA, Cone R, Forest MG, Lai SK. Using computational modeling to optimize the design of antibodies that trap viruses in mucus. ACS Infectious Diseases. 2015.

  52. Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–64.

    Article  CAS  PubMed  Google Scholar 

  53. Tan M, Ma X, Lv G, Zhao S, Zhang J, Lv Y, et al. Influence of microemulsion-mucin interaction on the fate of microemulsions diffusing through pig gastric mucin solutions. Molecular pharmaceutics. 2015.

  54. Balázs H Bajka NMR, Kathryn L Cross. The influence of small intestinal mucus structure on particle transport ex vivo. Colloids & Surfaces B Biointerfaces. 2015;135:73–80.

  55. Léber, Attila, Budai-Sz?cs, Mária, Urbán, Edit, et al. Combination of zinc hyaluronate and metronidazole in a lipid-based drug delivery system for the treatment of periodontitis. Pharmaceutics. 2019.

  56. Battaglia L, Serpe L, Foglietta F, Muntoni E, Gallarate M, Ana DPR, et al. Application of lipid nanoparticles to ocular drug delivery. Expert Opin Drug Deliv. 2016;2016(17425247):1201059.

    Google Scholar 

  57. Escobedo-Sánchez MA, Segovia-Gutiérrez JP, Zuccolotto-Bernez AB, Hansen J, Marciniak CC, Sachowsky K, et al. Microliter viscometry using a bright-field microscope: η-DDM. Soft Matter. 2018;14.

  58. Schuster BS, Suk JS, Woodworth GF, Hanes J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 2013;34(13):3439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leonaviciute G, Adamovic NT, Lam HT, Rohrer J, Partenhauser A, Bernkop-Schnurch A. Self-emulsifying drug delivery systems (SEDDS): Proof-of-concept how to make them mucoadhesive. Eur J Pharm Biopharm. 2017;112:51–7.

    Article  CAS  PubMed  Google Scholar 

  60. Rohrer J, Partenhauser A, Hauptstein S, Gallati CM, Matuszczak B, Abdulkarim M, et al. Mucus permeating thiolated self-emulsifying drug delivery systems. Eur J Pharm Biopharm. 2016;98:90–7.

    Article  CAS  PubMed  Google Scholar 

  61. Lupo N, Jalil A, Nazir I, Gust R, Bernkop-Schnurch A. In vitro evaluation of intravesical mucoadhesive self-emulsifying drug delivery systems. Int J Pharm. 2019;564:180–7.

    Article  CAS  PubMed  Google Scholar 

  62. Hetenyi G, Griesser J, Nardin I, Bernkop-Schnurch A. Combination of SEDDS and preactivated thiomer technology: incorporation of a preactivated thiolated amphiphilic polymer into self-emulsifying delivery systems. Pharm Res. 2017;34(6):1171–9.

    Article  CAS  PubMed  Google Scholar 

  63. Leber A, Budai-Szucs M, Urban E, Valyi P, Gacsi A, Berko S, et al. Combination of zinc hyaluronate and metronidazole in a lipid-based drug delivery system for the treatment of periodontitis. Pharmaceutics. 2019;11(3).

  64. Seutter-Berlage F, Rietveld EC, Plate R, Klippert PJM. Mercapturic Acids as Metabolites of Aromatic Aldehydes and Alcohols. Oxygen Transport to Tissue XXXIII. 1981;136 Pt A:359–67.

  65. Hang Zhao JY, Qian Yang, Yanhua Xie, Wei Cao, and Siwang Wang. Cinnamaldehyde in a novel intravenous submicrometer emulsion: pharmacokinetics, tissue distribution, antitumor efficacy, and toxicity. Journal of Agricultural & Food Chemistry. 2015;63:6386−92.

Download references

Acknowledgements

The content is solely the responsibility of the authors and does not necessarily represent the official views of Anhui University of Chinese Medicine.

Funding

The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 81803831), Key University Natural Science Research Project of Anhui Province (KJ2018A0301).

Author information

Authors and Affiliations

Authors

Contributions

Wenxuan Cao: Contributed significantly to editing the manuscript in major revisions. Mengqiu Xia: investigation, writing—review and editing. Chunling Tian: Software, Data curation. Wenqing Wu: writing—review and editing. Ye Cai: writing—review and editing. Xiaoqin Chu: conceptualization, funding acquisition, project administration, writing—review and editing, supervision.

Corresponding author

Correspondence to Xiaoqin Chu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics Approval

All animal programs were approved by the Animal Ethics Committee of Anhui University of Traditional Chinese Medicine (Hefei, China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Cao, W., Xia, M. et al. Self-Emulsifying Drug Delivery System Enhances Tissue Distribution of Cinnamaldehyde by Altering the Properties of the Mucus Layer. AAPS PharmSciTech 23, 261 (2022). https://doi.org/10.1208/s12249-022-02416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02416-4

Keywords

Navigation