Skip to main content
Log in

Albumin-Embellished Arsenic Trioxide-Loaded Polymeric Nanoparticles Enhance Tumor Accumulation and Anticancer Efficacy via Transcytosis for Hepatocellular Carcinoma Therapy

  • Research Article
  • Theme: Recent Advances on Drug Delivery Systems for Viral Infections
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Arsenic trioxide (ATO) has efficient anticancer effect on hepatocellular carcinoma (HCC) in clinical trials, but its off-target distribution and side effects have limited its use. Here, we demonstrate an albumin-embellished ATO-loaded polyethylene glycol–polycaprolactone–polyethyleneimine (PEG–PCL–PEI) nanoparticle (AATONP) to enhance the tumor distribution and intratumor drug release of ATO for HCC therapy. AATONP is prepared by surface embellishment with albumin on the cationic ATO-loaded PEG–PCL–PEI nanoparticles (CATONP). Albumin embellishment can reduce the cationic material’s hemolytic toxicity in blood cells while maintaining the rapid internalization and lysosome escape abilities of the positively charged CATONP. AATONP provides sustained and low pH-responsive drug release, facilitating the targeted drug release in the intratumor acidic microenvironment. Moreover, AATONP can significantly improve the circulation time and tumor distribution of ATO via albumin-mediated transcytosis in HCC tumor-bearing mice. Compared with free ATO and the clinically used nanomedicine Genexol/PM, AATONP shows potent antitumor activity against a human HCC xenograft mouse model, leading to a higher tumor inhibition rate of 89.4% in HCC therapy. In conclusion, this work presents an efficient strategy to achieve tumor accumulation and the intratumor drug release of ATO for HCC therapy.

Graphical abstract

An albumin-embellished arsenic trioxide (ATO)-loaded polyethylene glycol–polycaprolactone–polyethyleneimine nanoparticle (AATONP) is designed to enhance tumor distribution and intratumor drug release of ATO for hepatocellular carcinoma therapy. AATONP can achieve enhanced tumor distribution via albumin-mediated transcytosis and exhibit intratumor drug release of ATO via tumor acidic microenvironment-response, leading to potent antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood. 2008;111(5):2505–15. https://doi.org/10.1182/blood-2007-07-102798.

    Article  CAS  PubMed  Google Scholar 

  2. Park J, Jurcic JG, Rosenblat T, Tallman MS. Emerging new approaches for the treatment of acute promyelocytic leukemia. Ther Adv Hematol. 2011;2(5):335–52. https://doi.org/10.1177/2040620711410773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fei W, Li C, Tao J, Cai X, Yao W, Ye Y, Zhang Y, Yao Y, Song Q, Li F, Zheng C. Construction of arsenic-metal complexes loaded nanodrugs for solid tumor therapy: A mini review. Int J Pharm. 2020;583:119385. https://doi.org/10.1016/j.ijpharm.2020.119385.

    Article  CAS  PubMed  Google Scholar 

  4. Akhtar A, Wang SX, Ghali L, Bell C, Wen X. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers. J Biomed Res. 2017;31(3):177–88. https://doi.org/10.7555/jbr.31.20160059.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang L, Zhou Y, Kong J, Zhang L, Yuan M, Xian S, Wang Y, Cheng Y, Yang X. Effect of arsenic trioxide on cervical cancer and its mechanisms. Exp Ther Med. 2020;20(6):169–72. https://doi.org/10.3892/etm.2020.9299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tao J, Fei W, Tang H, Li C, Mu C, Zheng H, Li F, Zhu Z. Angiopep-2-Conjugated "Core-Shell" Hybrid Nanovehicles for Targeted and pH-Triggered Delivery of Arsenic Trioxide into Glioma. Mol Pharm. 2019;16(2):786–97. https://doi.org/10.1021/acs.molpharmaceut.8b01056.

    Article  CAS  PubMed  Google Scholar 

  7. Lu Y, Han S, Zheng H, Ma R, Ping Y, Zou J, Tang H, Zhang Y, Xu X, Li F. A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. Int J Nanomedicine. 2018;13:5937–52. https://doi.org/10.2147/ijn.S175418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fei W, Zhang Y, Han S, Tao J, Zheng H, Wei Y, Zhu J, Li F, Wang X. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. Int J Pharm. 2017;519(1-2):250–62. https://doi.org/10.1016/j.ijpharm.2017.01.031.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng T, Yin D, Lu Z, Wang J, Li Y, Chen X, Liang Y, Song X, Qi S, Sun B, Xie C, Meng X, Pan S, Liu J, Jiang H, Liu L. Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma. Mol Cancer. 2014;13(1):133. https://doi.org/10.1186/1476-4598-13-133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shooshtary S, Behtash S, Nafisi S. Arsenic trioxide binding to serum proteins. J Photochem Photobiol B Biol. 2015;148:31–6. https://doi.org/10.1016/j.jphotobiol.2015.03.001.

    Article  CAS  Google Scholar 

  11. Swindell EP, Hankins PL, Chen H, Miodragovic DU, O'Halloran TV. Anticancer Activity of Small-Molecule and Nanoparticulate Arsenic(III) Complexes. Inorg Chem. 2013;52(21):12292–304. https://doi.org/10.1021/ic401211u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song X, You J, Wang J, Zhu A, Ji L, Guo R. Preparation and Investigation of Arsenic Trioxide-loaded Polylactic Acid/Magnetic Hybrid Nanoparticles. Chem Res Chin Univ. 2014;30(2):326–32. https://doi.org/10.1007/s40242-014-3306-9.

    Article  CAS  Google Scholar 

  13. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. https://doi.org/10.1038/nrc.2016.108.

    Article  CAS  PubMed  Google Scholar 

  14. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev. 2017;108:25–38. https://doi.org/10.1016/j.addr.2016.04.025.

    Article  CAS  PubMed  Google Scholar 

  15. He L, Liu Y, Lau J, Fan W, Li Q, Zhang C, Huang P, Chen X. Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine. 2019;14(10):1343–65. https://doi.org/10.2217/nnm-2018-0347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoonjan M, Jadhav V, Bhatt P. Arsenic trioxide: insights into its evolution to an anticancer agent. J Biol Inorg Chem. 2018;23(3):313–29. https://doi.org/10.1007/s00775-018-1537-9.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao X, Liu Y, Guo M, Fei W, Zheng H, Zhang R, Zhang Y, Wei Y, Zheng G, Li F. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. J Biomater Appl. 2016;31(1):23–35. https://doi.org/10.1177/0885328216637211.

    Article  CAS  PubMed  Google Scholar 

  18. Croissant JG, Fatieiev Y, Khashab NM. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv Mater. 2017;29(9):1604634. https://doi.org/10.1002/adma.201604634.

    Article  CAS  Google Scholar 

  19. He Q, Zhang Z, Gao Y, Shi J, Li Y. Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano- and Microparticles. Small. 2009;5(23):2722–9. https://doi.org/10.1002/smll.200900923.

    Article  CAS  PubMed  Google Scholar 

  20. Laechelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev. 2015;115(19):11043–78. https://doi.org/10.1021/cr5006793.

    Article  CAS  Google Scholar 

  21. Chen D, Han S, Zhu Y, Hu F, Wei Y, Wang G. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nanomedicine. 2018;13:3507–27. https://doi.org/10.2147/ijn.S166445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robb R, Kuo JC-T, Liu Y, Corrales-Guerrero S, Cui T, Hegazi A, Nagy G, Lee RJ, Williams TM. A novel protein-drug conjugate, SSH20, demonstrates significant efficacy in caveolin-1-expressing tumors. Mol Ther-Oncol. 2021;22:555–64. https://doi.org/10.1016/j.omto.2021.07.013.

    Article  CAS  Google Scholar 

  23. Hoogenboezem EN, Duvall CL. Harnessing albumin as a carrier for cancer therapies. Adv Drug Deliv Rev. 2018;130:73–89. https://doi.org/10.1016/j.addr.2018.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hama M, Ishima Y, Chuang VTG, Ando H, Shimizu T, Ishida T. Evidence for Delivery of Abraxane via a Denatured-Albumin Transport System. ACS Appl Mater Interfaces. 2021;13(17):19736–44. https://doi.org/10.1021/acsami.1c03065.

    Article  CAS  PubMed  Google Scholar 

  25. Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, Shen Y, Huang P. Enzyme-Triggered Transcytosis of Dendrimer-Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS Nano. 2020;14(4):4890–904. https://doi.org/10.1021/acsnano.0c00974.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng X, Xie J, Zhang X, Sun W, Zhao H, Li Y, Wang C. An overview of polymeric nanomicelles in clinical trials and on the market. Chin Chem Lett. 2020;32(1):243–57. https://doi.org/10.1016/j.cclet.2020.11.029.

    Article  CAS  Google Scholar 

  27. Sun XR, Wang GW, Zhang H, Hu SQ, Liu X, Tang JB, Shen YQ. The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery. ACS Nano. 2018;12(6):6179–92. https://doi.org/10.1021/acsnano.8b02830.

    Article  CAS  PubMed  Google Scholar 

  28. Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Adv Mater. 2017;29(14):1606628. https://doi.org/10.1002/adma.201606628.

    Article  CAS  Google Scholar 

  29. Wang HX, Zuo ZQ, Du JZ, Wang YC, Sun R, Cao ZT, Ye XD, Wang JL, Leong KW, Wang J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today. 2016;11(2):133–44. https://doi.org/10.1016/j.nantod.2016.04.008.

    Article  CAS  Google Scholar 

  30. Manaargadoo-Catin M, Ali-Cherif A, Pougnas J-L, Perrin C. Hemolysis by surfactants-A review. Adv Colloid Interf Sci. 2016;228:1–16. https://doi.org/10.1016/j.cis.2015.10.011.

    Article  CAS  Google Scholar 

  31. Tsoi KM, MacParland SA, Ma X-Z, Spetzler VN, Echeverri J, Ouyang B, Fadel SM, Sykes EA, Goldaracena N, Kaths JM, Conneely JB, Alman BA, Selzner M, Ostrowski MA, Adeyi OA, Zilman A, McGilvray ID, Chan WCW. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15(11):1212–21. https://doi.org/10.1038/nmat4718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang G, Bihan W, Li Q, Chen S, Jin X, Liu Y, Zhou Z, Shen Y, Huang P. Active transportation of liposome enhances tumor accumulation, penetration, and therapeutic efficacy. Small. 2020;16:2004172. https://doi.org/10.1002/smll.202004172.

    Article  CAS  Google Scholar 

  33. Winter N, Murphy RJ, o Halloran T, Schatz G. Development and modeling of arsenic-trioxide loaded thermosensitive liposomes for anticancer drug delivery. Journal of Liposome. Research. 2011;21:106–15. https://doi.org/10.3109/08982104.2010.483597.

    Article  CAS  Google Scholar 

  34. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials. 2016;85:152–67. https://doi.org/10.1016/j.biomaterials.2016.01.061.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, Vakili MR, Li X-F, Lavasanifar A, Le XC. Polymeric micelles for GSH-triggered delivery of arsenic species to cancer cells. Biomaterials. 2014;35(25):7088–100. https://doi.org/10.1016/j.biomaterials.2014.04.072.

    Article  CAS  PubMed  Google Scholar 

  36. Miller WH, Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res. 2002;62(14):3893–903.

    CAS  PubMed  Google Scholar 

  37. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003. https://doi.org/10.1038/nmat3776.

    Article  CAS  PubMed  Google Scholar 

  38. Schoettler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, Mailaender V, Wurm FR. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol. 2016;11(4):372–7. https://doi.org/10.1038/nnano.2015.330.

    Article  CAS  Google Scholar 

  39. Su G, Jiang H, Xu B, Yu Y, Chen X. Effects of Protein Corona on Active and Passive Targeting of Cyclic RGD Peptide-Functionalized PEGylation Nanoparticles. Mol Pharm. 2018;15(11):5019–30. https://doi.org/10.1021/acs.molpharmaceut.8b00612.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Natural Science Foundation of China (Nos. 82003669, 82102191), Science and Technology Program on Medicine and Health of Zhejiang Province (Nos. 2017KY511, 2022KY913), and Natural Science Foundation of Zhejiang Province (No. LYY21H310001).

Author information

Authors and Affiliations

Authors

Contributions

Yu Huang contributed to investigation, data curation, project administration, methodology, and writing original draft. Zhishi Xu contributed to investigation, validation, software, and writing original draft. Yinghui Wei contributed to conceptualization and validation. Shunping Han contributed to software and writing original draft. Xinjun Cai contributed to conceptualization, funding acquisition, and writing review and editing. Danfei Chen contributed to supervision, funding acquisition, conceptualization, project administration, and writing review and editing.

Corresponding authors

Correspondence to Xinjun Cai or Danfei Chen.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest in this work.

Additional information

Guest Editor. Claudio Salomom

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Theme: Recent Advances on Drug Delivery Systems for Viral Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Xu, Z., Wei, Y. et al. Albumin-Embellished Arsenic Trioxide-Loaded Polymeric Nanoparticles Enhance Tumor Accumulation and Anticancer Efficacy via Transcytosis for Hepatocellular Carcinoma Therapy. AAPS PharmSciTech 23, 111 (2022). https://doi.org/10.1208/s12249-022-02254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02254-4

KEY WORDS

Navigation