Skip to main content

Advertisement

Log in

Mupirocin-Loaded Chitosan Microspheres Embedded in Piper betle Extract Containing Collagen Scaffold Accelerate Wound Healing Activity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study reports the formulation of mupirocin-loaded chitosan microspheres embedded in Piper betle extract containing collagen scaffold as combinational drug delivery for improved wound healing. Selection of chitosan type (molecular weight and degree of deacetylation) was carried out based on their antibacterial efficacy. The low molecular weight chitosan was selected owing to the highest antibacterial action against gram-positive as well as gram-negative bacteria. Low molecular weight chitosan-microspheres showed spherical shape with largely smooth surface morphology, 11.81% of mupirocin loading, and its controlled release profile. The XRD, DSC thermograms, and FT-IR spectral analysis revealed the mupirocin loaded in molecularly dispersed or in amorphous form, and having no chemical interactions with the chitosan matrix, respectively. The in vivo study indicates potential effect of the mupirocin, Piper betle, and chitosan in the collagen scaffold in the wound healing efficiency with approximately 90% wound healing observed at the end of 15 days of study for combinational drug-loaded chitosan microspheres-collagen scaffold-treated group. The histopathology examination further revealed tissue lined by stratified squamous epithelium, collagen deposition, fibroblastic proliferation, and absence of inflammation indicating relatively efficient wound healing once treated with combinational drug-loaded chitosan microspheres containing scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lo ZJ, Lim X, Eng D, Car J, Hong Q, Yong E, Zhang L, Chandrasekar S, Tan GW, Chan YM. Clinical and economic burden of wound care in the tropics: a 5-year institutional population health review. Int Wound J. 2020;17:790–803.

    Article  Google Scholar 

  2. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99:665–706. https://doi.org/10.1152/physrev.00067.2017.

    Article  CAS  PubMed  Google Scholar 

  3. Kim HS, Sun X, Lee J-H, Kim H-W, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019;146:209–39.

    Article  CAS  Google Scholar 

  4. Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, Ki M-H, Lee BL, Jung Y, Yoo J-W. Bacteria-targeted clindamycin loaded polymeric nanoparticles: effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics. 2019;11:236. https://doi.org/10.3390/pharmaceutics11050236.

    Article  CAS  PubMed Central  Google Scholar 

  5. Okur NÜ, Hökenek N, Okur ME, Ayla Ş, Yoltaş A, Siafaka PI, Cevher E. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J. 2019;27:738–52.

    Article  Google Scholar 

  6. Golmohammadi R, Najar-Peerayeh S, Tohidi Moghadam T, Hosseini SMJ. Synergistic antibacterial activity and wound healing properties of selenium-chitosan-mupirocin nanohybrid system: an in vivo study on rat diabetic Staphylococcus aureus wound infection model. Sci Rep. 2020;10:2854. https://doi.org/10.1038/s41598-020-59510-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldmann O, Cern A, Müsken M, Rohde M, Weiss W, Barenholz Y, Medina E. Liposomal mupirocin holds promise for systemic treatment of invasive Staphylococcus aureus infections. J Control Release. 2019;316:292–301. https://doi.org/10.1016/j.jconrel.2019.11.007.

    Article  CAS  PubMed  Google Scholar 

  8. Amrutiya N, Bajaj A, Madan M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech. 2009;10:402–9. https://doi.org/10.1208/s12249-009-9220-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yasasvini S, Anusa R, VedhaHari B, Prabhu P, RamyaDevi D. Topical hydrogel matrix loaded with Simvastatin microparticles for enhanced wound healing activity. Mater Sci Eng C. 2017;72:160–7. https://doi.org/10.1016/j.msec.2016.11.038.

    Article  CAS  Google Scholar 

  10. Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm. 2019;87:20. https://doi.org/10.3390/scipharm87030020.

    Article  CAS  Google Scholar 

  11. Midha K, Nagpal M, Arora S. Microspheres: a recent update. Int J Recent Sci Res. 2015;8:5859–67.

    Google Scholar 

  12. Berthold A, Cremer K, Kreuter J. Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J Control Release. 1996;39:17–25. https://doi.org/10.1016/0168-3659(95)00129-8.

    Article  CAS  Google Scholar 

  13. Lv B, Wang Y, Chen W. Preparation, Characterization, and bioactivity of chitosan microspheres containing basic fibroblast growth factor. J Nanomater. 2014;2014:1–7. https://doi.org/10.1155/2014/534287.

    Article  CAS  Google Scholar 

  14. Shanmuganathan S, Shanumugasundaram N, Adhirajan N, Lakshmi TR, Babu M. Preparation and characterization of chitosan microspheres for doxycycline delivery. Carbohydr Polym. 2008;73:201–11.

    Article  CAS  Google Scholar 

  15. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274:1–33. https://doi.org/10.1016/j.ijpharm.2003.12.026.

    Article  CAS  PubMed  Google Scholar 

  16. Varshosaz J. The promise of chitosan microspheres in drug delivery systems. Expert Opin Drug Deliv. 2007;4:263–73.

    Article  CAS  Google Scholar 

  17. Perinelli DR, Fagioli L, Campana R, Lam JK, Baffone W, Palmieri GF, Casettari L, Bonacucina G. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci. 2018;117:8–20.

    Article  CAS  Google Scholar 

  18. Zheng L-Y, Zhu J-F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym. 2003;54:527–30.

    Article  CAS  Google Scholar 

  19. Zhu Q, Teng J, Liu X, Lan Y, Guo R. Preparation and characterization of gentamycin sulfate-impregnated gelatin microspheres/collagen–cellulose/nanocrystal scaffolds. Polym Bull. 2018;75:77–91.

    Article  CAS  Google Scholar 

  20. Mahmoud AA, Salama AH. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: preparation, evaluation and in-vivo wound healing assessment. Eur J Pharm Sci. 2016;83:155–65. https://doi.org/10.1016/j.ejps.2015.12.026.

    Article  CAS  PubMed  Google Scholar 

  21. Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee S-H, Cho H, Kim HJ, Seong SC, Lee MC. Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials. 2004;25:4163–73.

    Article  CAS  Google Scholar 

  22. Denkbaş EB, Öztürk E, N. Özdem&unknown;r, K. Keçec&unknown;, C. Agalar, Norfloxacin-loaded chitosan sponges as wound dressing material, J Biomater Appl 18 (2004) 291–303. https://doi.org/10.1177/0885328204041510

  23. Keat EC, Razak SS, Fadil NM, Yusof FM, Chan LH, Chyi FK, Teoh SL, Das S, Latiff AA, Mazlan M. The effect of Piper betel extract on the wound healing process in experimentally induced diabetic rats. Clin Ter. 2010;161:117–20.

    CAS  PubMed  Google Scholar 

  24. Lien LT, Tho NT, Ha DM, Hang PL, Nghia PT, Thang ND. Influence of phytochemicals in Piper betle linn leaf extract on wound healing. Burns Trauma. 2015;3:s41038–015-0023–7. https://doi.org/10.1186/s41038-015-0023-7.

    Article  Google Scholar 

  25. Ghazali NA, Elmy A, Yuen LC, Sani NZ, Das S, Suhaimi F, Yusof R, Yusoff NH, Thent ZC. Piper betel leaves induces wound healing activity via proliferation of fibroblasts and reducing 11β hydroxysteriod dehydrogenase-1 expression in diabetic rat. J Ayurveda Integr Med. 2016;7:198–208. https://doi.org/10.1016/j.jaim.2016.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6:71–9.

    Article  Google Scholar 

  27. Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm. 2002;249:165–74. https://doi.org/10.1016/S0378-5173(02)00487-8.

    Article  CAS  PubMed  Google Scholar 

  28. Ali A, Lim XY, Chong CH, Mah SH, Chua BL. Optimization of ultrasound-assisted extraction of natural antioxidants from Piper betle using response surface methodology. LWT. 2018;89:681–8. https://doi.org/10.1016/j.lwt.2017.11.033.

    Article  CAS  Google Scholar 

  29. Perumal S, Ramadass SK, Madhan B. Sol–gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing. Eur J Pharm Sci. 2014;52:26–33. https://doi.org/10.1016/j.ejps.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  30. Karri VVSR, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, Mulukutla S, Raju KRS, Malayandi R. Curcumin-loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93:1519–29. https://doi.org/10.1016/j.ijbiomac.2016.05.038.

    Article  CAS  PubMed  Google Scholar 

  31. Anal AK, Stevens WF, Remuñán-López C. Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int J Pharm. 2006;312:166–73. https://doi.org/10.1016/j.ijpharm.2006.01.043.

    Article  CAS  PubMed  Google Scholar 

  32. Kim S. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci. 2018;2018:1–13. https://doi.org/10.1155/2018/1708172.

    Article  CAS  Google Scholar 

  33. Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci. 2001;79:1324–35.

    Article  Google Scholar 

  34. Chung Y-C, Chen C-Y. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol. 2008;99:2806–14. https://doi.org/10.1016/j.biortech.2007.06.044.

    Article  CAS  PubMed  Google Scholar 

  35. Chifiriuc CM, Grumezescu AM, Saviuc C, Croitoru C, Mihaiescu DE, Lazar V. Improved antibacterial activity of cephalosporins loaded in magnetic chitosan microspheres. Int J Pharm. 2012;436:201–5. https://doi.org/10.1016/j.ijpharm.2012.06.031.

    Article  CAS  PubMed  Google Scholar 

  36. Desai KGH, Park HJ, Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying, 2004

  37. Duraipandy N, Lakra R, Vinjimur Srivatsan K, Ramamoorthy U, Korrapati PS, Kiran MS. Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing. J Mater Chem B. 2015;3:1415–25. https://doi.org/10.1039/C4TB01791A.

    Article  CAS  PubMed  Google Scholar 

  38. Jones V, Grey JE, Harding KG. Wound dressings. BMJ. 2006;332:777–80.

    Article  Google Scholar 

  39. Hussain MR, Devi RR, Maji TK. Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran Polym J. 2012;21:473–9.

    Article  CAS  Google Scholar 

  40. Kulkarni PV, Keshavayya J, Kulkarni VH. Effect of method of preparation and process variables on controlled release of insoluble drug from chitosan microspheres. Polym Adv Technol. 2007;18:814–21. https://doi.org/10.1002/pat.940.

    Article  CAS  Google Scholar 

  41. Ochiuz L, Popa G, Stoleriu I, Tomoiagă AM, Popa M. Microencapsulation of metoprolol tartrate into chitosan for improved oral administration and patient compliance. Ind Eng Chem Res. 2013;52:17432–41. https://doi.org/10.1021/ie402625h.

    Article  CAS  Google Scholar 

  42. Dai T, Tanaka M, Huang Y-Y, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infect Ther. 2011;9:857–79. https://doi.org/10.1586/eri.11.59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The support for this study is provided by Taif University Researchers Supporting Project Number (TURSP-2020/33), Taif University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhan J. Ahmad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(JPG 68 kb)

ESM 2

(JPG 68 kb)

ESM 3

(JPG 111 kb)

ESM 4

(JPG 81 kb)

ESM 5

(JPG 113 kb)

ESM 6

(JPG 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budhiraja, M., Zafar, S., Akhter, S. et al. Mupirocin-Loaded Chitosan Microspheres Embedded in Piper betle Extract Containing Collagen Scaffold Accelerate Wound Healing Activity. AAPS PharmSciTech 23, 77 (2022). https://doi.org/10.1208/s12249-022-02233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02233-9

KEY WORDS

Navigation