Skip to main content
Log in

Cyclodextrin/Adamantane-Grafted Polyethylene Glycol–Based Self-assembling Constructs for Topical Delivery of Ketorolac Tromethamine: Formulation, Characterization, and In Vivo Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Topical formulation of non-steroidal anti-inflammatory drugs (NSAIDs) exhibits many advantages over the oral administration route, such as avoiding the direct effect on GIT and avoiding the poor oral bioavailability of such drugs. Our study aims to develop a new self-assembling construct based on the hydrophobic interaction between adamantane terminated poly (ethylene glycol) polymers and polymerized β-cyclodextrin. The viscous constructs were developed from direct mixing of host and guest polymer solutions, indicating spontaneous formation without cross-linkers. The modified system was evaluated by different analyses, including X-ray diffractometry, electron microscopy, isothermal titration calorimetry, and rheological analysis. Moreover, such a system’s ability for drug loading and release was investigated via the in vitro release of ketorolac tromethamine (KT) as a model of NSAIDs. Finally, the prepared formulas were applied on a rat paw edema model to prove the enhanced anti-inflammatory activities. The obtained results indicated that the modified constructs have a rubbery porous structure with an amorphous nature. Also, from rheological results, the modified system exhibited a viscous behavior with higher loss modulus (G″) compared with storage (G′). The inclusion complexation between cyclodextrin and adamantane moieties was proved by the recorded high binding constants with a 1:1 stoichiometric ratio. Furthermore, the results showed the successful KT incorporation into the modified system and quantitatively released through a semi-permeable membrane in a sustained fashion (over 24 h). Finally, the in vivo results of the medicated constructs showed a significant inhibition of the induced inflammation and swelling, indicating that the modified construct has a great utility for safe non-irritating topical delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khurana S, Chhillar N, Gautam VKS. Inventory control techniques in medical stores of a tertiary care neuropsychiatry hospital in Delhi. Health. 2013;05(01):8–13.

    Article  Google Scholar 

  2. Cho YA, Gwak HS. Transdermal delivery of ketorolac tromethamine: effects of vehicles and penetration enhancers. Drug Dev Ind Pharm. 2004;30(6):557–64.

    Article  CAS  PubMed  Google Scholar 

  3. Pabreja K, Dua K, Gorajana A. Evaluation of topical gels containing ketorolac tromethamine on inflammation and hyperalgesia in rats. Anti-Inflamm Anti-Allergy Agents Med Chem. 2012;10(5):323–6.

    Article  Google Scholar 

  4. Brocks DR, Jamali F. Clinical pharmacokinetic of ketorolac tromethamine. Clin Pharmacokinet. 1992;23(6):415–27.

    Article  CAS  PubMed  Google Scholar 

  5. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochemistry. 2004;39(9):1033–46.

    Article  Google Scholar 

  6. Mojumdar EH, Grey C, Sparr E. Self-assembly in gangliosidephospholipid systems: the co-existence of vesicles, micelles, and discs. Int J Mol Sci. 2019;21(1):56.

    Article  PubMed Central  Google Scholar 

  7. Nielsen AL, Steffensen K, Larsen KL. Self-assembling microparticles with controllable disruption properties based on cyclodextrin interactions. Colloids Surf B Biointerfaces. 2009;73(2):267–75.

    Article  CAS  PubMed  Google Scholar 

  8. Renard E. Volet Gl, Amiel C. Synthesis of a novel linear water-soluble β-cyclodextrin polymer. Polymer International. 2005;54(3):594–9.

    Article  CAS  Google Scholar 

  9. van de Manakker F, van der Pot M, Vermonden T, van Nostrum CF, Hennink WE. Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules. 2008;41(5):1766–73.

    Article  Google Scholar 

  10. van de Manakker F, Kroon-Batenburg LMJ, Vermonden T, van Nostrum CF, Hennink WE. Supramolecular hydrogels formed by β-cyclodextrin self-association and host–guest inclusion complexes. Soft Matter. 2010;6(1):187–94.

    Article  Google Scholar 

  11. Gref R, Amiel C, Molinard K, Daoud-Mahammed S, Sebille B, Gillet B, et al. New self-assembled nanogels based on host-guest interactions: characterization and drug loading. J Control Release. 2006;111(3):316–24.

    Article  CAS  PubMed  Google Scholar 

  12. Koopmans C, Ritter H. Formation of physical hydrogels via host−guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups. Macromolecules. 2008;41(20):7418–22.

    Article  CAS  Google Scholar 

  13. Daoud-Mahammed S, Couvreur P, Bouchemal K, Chéron M, Lebas GV, Amiel C, et al. Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen. Biomacromolecules. 2009;10(3):547–54.

    Article  CAS  PubMed  Google Scholar 

  14. Layre AM, Volet G, Wintgens V, Amiel C. Associative network based on cyclodextrin polymer: a model system for drug delivery. Biomacromolecules. 2009;10(12):3283–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013;65(9):1215–33.

    Article  CAS  PubMed  Google Scholar 

  16. Takashima Y, Nakayama T, Miyauchi M, Kawaguchi Y, Yamaguchi H, Harada A. Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chemistry Letters. 2004;33(7):890–1.

    Article  CAS  Google Scholar 

  17. Wang J, Qiu Z, Wang Y, Li L, Guo X, Pham DT, Lincoln SF, Prud’homme RK. Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host-guest complexation. Beilstein J Org Chem. 2016;12:50–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Harada A, Kamachi M. Sol–gel transition during inclusion complex formation between α-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueous solution. Polymer Journal. 1994;26(9):1019–26.

    Article  CAS  Google Scholar 

  19. Li J. Cyclodextrin inclusion polymers forming hydrogels. Inclusion Polymers. Advances in Polymer Science 2009. p. 175-203.

  20. Daoud-Mahammed S, Grossiord JL, Bergua T, Amiel C, Couvreur P, Gref R. Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs. J Biomed Mater Res A. 2008;86(3):736–48.

    Article  CAS  PubMed  Google Scholar 

  21. Li J. Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Materials. 2010;2(3):112–8.

    Article  Google Scholar 

  22. Park H, Park K. Biocompatibility issues of implantable drug delivery systems. Pharm Res. 1996;13(12):1770–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kamath KR, Park K. Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev. 1993;11(1-2):59–84.

    Article  CAS  Google Scholar 

  24. Heller J. Polymers for controlled parenteral delivery of peptides and proteins. Adv Drug Deliv Rev. 1993;10(2-3):163–204.

    Article  CAS  Google Scholar 

  25. Auzély-Velty R, Rinaudo M. New supramolecular assemblies of a cyclodextrin-grafted chitosan through specific complexation. Macromolecules. 2002;35(21):7955–62.

    Article  Google Scholar 

  26. Charlot A, Auzély-Velty R, Rinaudo M. Specific interactions in model charged polysaccharide systems†. J Phys Chem B. 2003;107(32):8248–54.

    Article  CAS  Google Scholar 

  27. Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release. 2002;80(1-3):9–28.

    Article  CAS  PubMed  Google Scholar 

  28. Budavari S, O’Neil M, Smith A. The Merck Index. 13th ed. Whitehouse Station, NJ: Merck & Co. Inc; 1996. p. 948.

    Google Scholar 

  29. Harries D, Rau DC, Parsegian VA. Solutes probe hydration in specific association of cyclodextrin and adamantane. J Am Chem Soc. 2005;127(7):2184–90.

    Article  CAS  PubMed  Google Scholar 

  30. Osman SK, Brandl FP, Zayed GM, Teßmar JK, Göpferich AM. Cyclodextrin based hydrogels: inclusion complex formation and micellization of adamantane and cholesterol grafted polymers. Polymer. 2011;52(21):4806–12.

    Article  CAS  Google Scholar 

  31. Osman SK, Soliman GM, El Rasoul SA. Physically crosslinked hydrogels of beta -cyclodextrin polymer and poly(ethylene glycol)-cholesterol as delivery systems for macromolecules and small drug molecules. Curr Drug Deliv. 2015;12(4):415–24.

    Article  CAS  PubMed  Google Scholar 

  32. Abdellatif AAH, Ibrahim MA, Amin MA, Maswadeh H, Alwehaibi MN, Al-Harbi SN, et al. Cetuximab conjugated with octreotide and entrapped calcium alginate-beads for targeting somatostatin receptors. Sci Rep. 2020;10(1):4736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siewert M, Dressman J, Brown CK, Shah VP, Fip, Aaps. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1):E7.

    Article  PubMed  Google Scholar 

  34. Mohammed AM, Osman SK, Saleh KI, Samy AM. In vitro release of 5-fluorouracil and methotrexate from different thermosensitive chitosan hydrogel systems. AAPS PharmSciTech. 2020;21(4):131.

    Article  CAS  PubMed  Google Scholar 

  35. Laskar PA. Physical pharmacy - physical and chemical principles in the pharmaceutical sciences - Martin, A, Swarbrick, J, Cammarata, A. Am J Pharm Educ. 1984;48(1):107–8.

    Google Scholar 

  36. Wagenmakers EJ. Model selection and multimodel inference: a practical information-theoretic approach. J Math Psychol. 2003;47(5-6):580–6.

    Article  Google Scholar 

  37. Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Exper Biol Med. 1962;111(3):544–7.

    Article  CAS  Google Scholar 

  38. Habib FS, Hassan MAA, Abou El Ela AEF, Raheem RESA. Different topical formulations of ketorolac tromethamine for anti-inflammatory application and clinical efficacy. Digest J Nano Biost. 2014;9(2):705–19.

    Google Scholar 

  39. Khunt DM, Mishra AD, Shah DR. Formulation design & development of piroxicam emulgel. Int J Pharm Tech Res. 2012;4(3):1332–44.

    CAS  Google Scholar 

  40. Bhanu PV, Shanmugam V, Lakshmi P. Development and optimization of novel diclofenac emulgel for topical drug delivery. Int J Compreh Pharm. 2011;9:1–4.

    Google Scholar 

  41. Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82(3):377–90.

    CAS  Google Scholar 

  42. Loh XJ, Colin Sng KB, Li J. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials. 2008;29(22):3185–94.

    Article  CAS  PubMed  Google Scholar 

  43. Bandi N, Wei W, Roberts CB, Kotra LP, Kompella UB. Preparation of budesonide- and indomethacin-hydroxypropyl-beta-cyclodextrin(HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur J Pharm Sci. 2004;23(2):159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sant VP, Nagarsenker MS. Synthesis of monomethoxypolyethyleneglycol-cholesteryl ester and effect of its incorporation in liposomes. AAPS PharmSciTech. 2011;12(4):1056–63.

  45. Choi SG, Lee SE, Kang BS, Ng CL, Davaa E, Park JS. Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-beta-cyclodextrin for buccal delivery. PLoS One. 2014;9(9):e109090.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tronci G, Ajiro H, Russell SJ, Wood DJ, Akashi M. Tunable drug-loading capability of chitosan hydrogels with varied network architectures. Acta Biomater. 2014;10(2):821–30.

    Article  CAS  PubMed  Google Scholar 

  47. Guo B, Finne-Wistrand A, Albertsson AC. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromolecules. 2011;12(7):2601–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang H, Peng L, Xin Y, Yan Q, Yuan J. Stimuli-responsive polymer networks with β-cyclodextrin and ferrocene reversible linkage based on linker chemistry. Macromol Symp. 2013;329(1):66–9.

    Article  CAS  Google Scholar 

  49. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Cont Rel. 1987;5(1):37–42.

    Article  CAS  Google Scholar 

  50. Helal DA, El-Rhman DA, Abdel-Halim SA, El-Nabarawi MA. Formulation and evaluation of fluconazole topical gel. Int J Pharm Pharm Sci. 2012;4(5):302–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Ahmed A. H. Abdellatif and Shaaban K. Osman; data curation, Gamal Zayed; formal analysis, Ahmed M. Mohammed and Shaaban K. Osman; investigation, Ahmed A. H. Abdellatif and Shaaban K. Osman; methodology, Shaaban K. Osman; project administration, Ahmed A. H. Abdellatif, Saleh Abd El-Rasoul, and Shaaban K. Osman; resources, Ahmed A. H. Abdellatif, Gamal Zayed, Saud A. Almawash, and Shaaban K. Osman; software, Ahmed M. Mohammed and Mohamed A. Safwat; validation, Ahmed A. H. Abdellatif and Saleh Abd El-Rasoul; visualization, Saleh Abd El-Rasoul, Saud A. Almawash, Mohamed A. Safwat, and Shaaban K. Osman; writing — original draft, Ahmed M. Mohammed, Gamal Zayed, and Shaaban K. Osman; writing — review and editing, Ahmed A. H. Abdellatif and Shaaban K. Osman.

Corresponding author

Correspondence to Shaaban K. Osman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethical Approval

The procedures were approved by the Animal Ethics Committee of Al-Azhar University, Faculty of Pharmacy, Assiut, Egypt (Approval No. AZ-AS/PH/3/C/2021).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, A.A.H., Mohammed, A.M., Zayed, G. et al. Cyclodextrin/Adamantane-Grafted Polyethylene Glycol–Based Self-assembling Constructs for Topical Delivery of Ketorolac Tromethamine: Formulation, Characterization, and In Vivo Studies. AAPS PharmSciTech 23, 45 (2022). https://doi.org/10.1208/s12249-021-02188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02188-3

KEY WORDS

Navigation