Skip to main content

Advertisement

Log in

Experimental Solubility of Ketoconazole, Validation Models, and In vivo Prediction in Human Based on GastroPlus

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The study aimed to identify a suitable cosolvent + water mixture for subcutaneous (sub-Q) delivery of ketoconazole (KETO). The solubility was assessed for several dimethyl acetamide (DMA) + water mixtures at T = 293.2 to 318.2 K and pressure P = 0.1 MPa. The experimental solubility (xe) was validated using the Van ʼt Hoff and Yalkowsky models and functional thermodynamic parameters (enthalpy ΔsolH°, entropy ΔsolS°, and Gibbs free energy ΔsolG°). The in vitro drug release study was performed at physiological pH, and the data served as the input to GastroPlus, which predicted the in vivo performance of KETO dissolved in a DMA + water cosolvent mixture for sub-Q delivery in human. The maximum solubility (mole fraction) of KETO (9.81 × 10−1) was obtained for neat DMA at 318.2 K whereas the lowest value (1.7 × 10−5) was for pure water at 293.2 K. An apparent thermodynamic analysis based on xe gave positive values for the functional parameters. KETO dissolution requires energy, as evidenced by the high positive values of ΔsolH° and ΔsolG°. Interestingly, ΔsolG° progressively decreased with increasing concentration of DMA in the DMA + water mixture, suggesting that the DMA-based molecular interaction improved the solubilization. Positive values of ΔsolG° and ΔsolS° for each DMA + water cosolvent mixture corroborated the endothermic and entropy-driven dissolution. GastroPlus predicted better absorption of KETO through sub-Q delivery than oral delivery. Hence, the DMA + water mixture may be a promising system for sub-Q delivery of KETO to control topical and systemic fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hashemzadeh N, Jouyban A. Solubility of ketoconazole in ethanol + water mixtures at various temperatures. Chem Eng Commun. 2015;202:1211–5.

    Article  CAS  Google Scholar 

  2. Jacobs GA, Gerber M, Malan MM, du Preez JL, Fox LT, du Plessis J. Topical delivery of acyclovir and ketoconazole. Drug Deliv. 2014;23:631–41.

    Article  Google Scholar 

  3. Durden FM, Elewski B. Fungal infections in HIV-infected patients. Semin Cutaneous Med Surg. 1997;16:200–12.

    Article  CAS  Google Scholar 

  4. Shakeel F, Alanazi F, Alsarra IA, Haq N. Solubilization behavior of paracetamol in transcutol-water mixtures at (298.15 to 333.14) K. J Chem Eng Data. 2013;58:3551–6.

    Article  CAS  Google Scholar 

  5. Soltanpour S, Nazemi V. Solubility of ketoconazole in binary and ternary solvents of polyethylene glycols 200, 400 or 600 with ethanol and water at 298.2 K. Data Report and Analysis. J Solut Chem. 2018;47:65–79.

    Article  CAS  Google Scholar 

  6. Zadaliasghar S, Rahimpour E, Ghafourian T, Martinez F, Barzegar-Jalali M, Jouyban A. Measurement and mathematical modeling of ketoconazole solubility in propylene glycol + water mixtures at various temperatures. J Mol Liq. 2019;291:111246. https://doi.org/10.1016/j.molliq.2019.111246.

    Article  CAS  Google Scholar 

  7. Jouyban-Gharamaleki V, Jouyban A, Martinez F, Zhao H, Rahimpour E. A laser monitoring technique for solubility study of ketoconazole in propylene glycol and 2-propanol mixtures at various temperatures. Journal of molecular liquids. 2020. https://doi.org/10.1016/j.molliq.2020.114444.

  8. Barzegar-Jalali M, Agha HEM, Adibkia K, Martinez F, Jouyban A. The solubility of ketoconazole in binary carbitol + water mixtures at T = (293.2–313.2) K. J Mol Liq. 2019:111756. https://doi.org/10.1016/j.molliq.2019.111756.

  9. Balata G, Mahdi M, Bakera RA. Improvement of solubility and dissolution properties of ketoconazole by solid dispersions and inclusion complexes. Asian J Pharm Sci. 2010;5:1–12.

    Google Scholar 

  10. Vasoya JM, Shah AV, Serajuddin ATM. Investigation of possible solubility and dissolution advantages of cocrystals, I: aqueous solubility and dissolution rates of ketoconazole and its cocrystals as functions of Ph. ADMET & DMPK. 2019;7:106–30.

    Article  Google Scholar 

  11. Shakeel F, Alanazi FK, Alsarra IA, Haq N. Thermodynamics based mathematical model for solubility prediction of glibenclamide in ethanol-water mixtures. Pharm Dev Technol. 2014;19(6):702–7.

    Article  CAS  Google Scholar 

  12. Kitak T, Dumicic A, Planinsek O, Sibanc R, Srcic S. Determination of solubility 10 parameters of ibuprofen and ibuprofen lysinate. Molecules. 2015;20:21549–68.

    Article  CAS  Google Scholar 

  13. Roy C, Charkrabarty R. Stability indicating validated novel RP-HPLC method for simulataneous estimation of methylparaben, ketoconazole and mometasone furoate in topical pharmaceutical dosage formulation. ISRI Analytical Chemistry, 2013;Article ID 342794:1-9. https://doi.org/10.1155/2013/342794.

  14. Harris R, Jones HE, Artis WM. Orally administered ketoconazole: route of delivery to the human stratum corneum. Antimicrob Agents Chemother. 1983;24:876–82.

    Article  CAS  Google Scholar 

  15. Zhou R, Moench P, Heran C, Lu X, Mathias N, Faria TN, et al. pH-dependent dissolution in vitro and absorption in vivo of weakly basic drugs: development of a canine model. Pharm Res. 2005;22(2):188–92.

    Article  CAS  Google Scholar 

  16. Apelblat A, Manzurola E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic and p-toluic acid and magnesium-DL-aspartate in water from T = 20 (278–348) K. J Chem Thermodyn. 1999;31:85–91.

    Article  CAS  Google Scholar 

  17. Manzurola E, Apelblat A. Solubilities of L-glutamic acid, 3-nitrobenzoic acid, acetylsalicylic, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL- aspartate, and magnesium-L-lactate in water. J Chem Thermodyn. 2002;34:1127–36.

    Article  CAS  Google Scholar 

  18. Krug RR, Hunter WG, Grieger RS. Enthalpy-entropy compensation. 2. Separation 5 of the chemical from the statistic effect. J Phys Chem. 1976;80:2341–51.

    Article  CAS  Google Scholar 

  19. Ruidiaz MA, Delgado DR, Martínez F, Marcus Y. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010;299:259–65.

    Article  CAS  Google Scholar 

  20. Kalam MA, Alshehri S, Alshamsan A, Haque A, Shakeel F. Solid liquid equilibrium of an antifungal drug itraconazole in different neat solvents: determination and correlation. J Mol Liq. 2017;234:81–7.

    Article  Google Scholar 

  21. Barton. Solubility parameters. Chem Rev. 1975;75(6):731–53.

    Article  CAS  Google Scholar 

  22. Jouyban A, Acrer WE Jr, Martinez F. Dissolution thermodynamics and preferential solvation of ketoconazole in some {ethanol (1) + water (2)} mixtures. J Mol Liq. 2020;313:113579.

    Article  CAS  Google Scholar 

  23. Jouyban A, Soleymani J, Soltanpour S. Solubility of ketoconazole in polyethylene glycol 200 + water mixtures at 298.2–318.2 K. J Solut Chem. 2014;43:950–8.

    Article  CAS  Google Scholar 

  24. Blum RA, D’Andrea DT, Florentino BM, Wilton JH, Hilligoss DM, Gardner MJ, et al. Increased gastric pH and the bioavailability of fluconazole and ketoconazole. Ann Intern Med. 1999;114:755–7.

    Article  Google Scholar 

  25. Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother. 1995;39:1671–5.

    Article  CAS  Google Scholar 

  26. Lelawongs P, Barone JA, Colaizzi JL, Hsuan AT, Mechlinski W, Legendre R, et al. Effect of food and gastric acidity on absorption of orally administered ketoconazole. Clin Pharm. 1988;7:228–35.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group number RG-1441-462.

Funding

This research was funded by the Deanship of Scientific Research at King Saud University, grant number “RG-1441-462”. The English language correction service was funded by the “Deanship of Scientific Research at King Saud University.”

Author information

Authors and Affiliations

Authors

Contributions

Afzal Hussain: conceptualization, software, writing—original draft preparation. Mohammad A. Altamimi: software, validation: data curation and reviewing. Sultan Alshehri: conceptualization, and software. Syed Sarim Imam: analysis and data curation. Osamah Abdulrahman Alnemer: drafting and review. Wasimul Haque: data curation and software analysis. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Afzal Hussain.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Altamimi, M.A., Alshehri, S. et al. Experimental Solubility of Ketoconazole, Validation Models, and In vivo Prediction in Human Based on GastroPlus. AAPS PharmSciTech 22, 194 (2021). https://doi.org/10.1208/s12249-021-02075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02075-x

KEY WORDS

Navigation