Skip to main content
Log in

Self-Assembled Micelles Improve the Oral Bioavailability of Dihydromyricetin and Anti-Acute Alcoholism Activity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Dihydromyricetin (DMY) is highly effective in counteracting acute alcohol intoxication. However, its poor aqueous solubility and permeability lead to the low oral bioavailability and limit its clinic application. The aim of this work is to use Solutol®HS15 (HS 15) as surfactant to develop novel micelle to enhance the oral bioavailability of DMY by improving its solubility and permeability. The DMY-loaded Solutol®HS15 micelles (DMY-Ms) were prepared by the thin-film hydration method. The particle size of DMY-Ms was 13.97 ± 0.82 nm with an acceptable polydispersity index of 0.197 ± 0.015. Upon entrapped in micelles, the solubility of DMY in water was increased more than 25-fold. The DMY-Ms had better sustained release property than that of pure DMY. In single-pass intestinal perfusion models, the absorption rate constant (Ka) and permeability coefficient (Papp) of DMY-Ms were 5.5-fold and 3.0-fold than that of pure DMY, respectively. The relative bioavailability of the DMY-Ms (AUC0–∞) was 205% compared with that of pure DMY (AUC0–∞), indicating potential for clinical application. After administering DMY-Ms, there was much lower blood alcohol level and shorter duration of the loss of righting relax (LORR) in drunk animals compared with that treated by pure DMY. In addition, the oral administration of DMY-Ms greatly reduced oxidative stress, and significantly defended liver and gastric mucosa from alcoholic damages in mice with alcohol-induced tissue injury. Taken together, HS 15-based micelle system greatly improves the bioavailability of DMY and represents a promising strategy for the management of acute alcoholism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ye L, Wang H, Duncan SE, Eigel WN, O'Keefe SF. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef. Food Chem. 2015;172:416–22.

    Article  CAS  PubMed  Google Scholar 

  2. Huang Y, Chen K, Ren Q, Yi L, Zhu J, Zhang Q, et al. Dihydromyricetin attenuates dexamethasone-induced muscle atrophy by improving mitochondrial function via the PGC-1alpha pathway. Cell physiol Biochem. 2018;49(2):758–79.

    Article  CAS  PubMed  Google Scholar 

  3. Liang J, Wu J, Wang F, Zhang P, Zhang X. Semaphoring 4D is required for the induction of antioxidant stress and anti-inflammatory effects of dihydromyricetin in colon cancer. Int Immunopharmacol. 2019;67:220–30.

    Article  CAS  PubMed  Google Scholar 

  4. Sandra I, Henriette R, Sharon J, Macaire MSY, L ML, Joerg B. Flavonol biosynthesis genes and their use in engineering the plant antidiabetic metabolite montbretin A. Plant Physiol. 2019;180(3):1277–90.

    Article  CAS  Google Scholar 

  5. Zhang J, Chen Y, Luo H, Sun L, Xu M, Yu J, et al. Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Front Pharmacol. 2018;9:1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun M, Shen Z, Zhou Q, Wang M. Identification of the antiglycative components of Hong Dou Shan (Taxus chinensis) leaf tea. Food Chem. 2019;297:124942.

    Article  CAS  PubMed  Google Scholar 

  7. Wu Y, Bai J, Zhong K, Huang Y. Gao H. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus. Food Chem. 2017;218:463–70.

    Article  CAS  PubMed  Google Scholar 

  8. Liang J, Olsen RW. Alcohol use disorders and current pharmacological therapies: the role of GABA(A) receptors. Acta Pharmacol Sin. 2014;35(8):981–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qian J, Meng H, Xin L, Xia M, Shen H, Li G, et al. Self-nanoemulsifying drug delivery systems of myricetin: Formulation development, characterization, and in vitro and in vivo evaluation. Colloids Surf B: Biointerfaces. 2017;160:101–9.

    Article  CAS  PubMed  Google Scholar 

  10. Suvarna V, Gujar P, Murahari M. Complexation of phytochemicals with cyclodextrin derivatives—an insight. Biomed Pharmacother = Biomed Pharmacother. 2017;88:1122–44.

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Yin X, Wang X, Li X. Determination of dihydromyricetin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Pharm Biol. 2017;55(1):657–62.

    Article  CAS  PubMed  Google Scholar 

  12. Sun C-C, Su H, Zheng G-D, Wang W-J, Yuan E, Zhang Q-F. Fabrication and characterization of dihydromyricetin encapsulated zein-caseinate nanoparticles and its bioavailability in rat. Food Chem. 2020;330:127245.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao X, Shi C, Zhou X, Lin T, Gong Y, Yin M, et al. Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: in vitro and in vivo evaluations. Eur J Pharm Sci. 2019;138:104994.

    Article  CAS  PubMed  Google Scholar 

  14. Wu X, Xu J, Huang X, Wen C. Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability. Drug Dev Ind Pharm. 2011;37(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Yang X, Zhao L, Jiao Y, Liu J, Zhai G. In vitro and in vivo study of Baicalin-loaded mixed micelles for oral delivery. Drug Deliv. 2016;23(6):1933–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hou J, Wang J, Sun E, Yang L, Yan HM, Jia XB, et al. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers. Drug Deliv. 2016;23(9):3248–56.

    Article  CAS  PubMed  Google Scholar 

  17. Ma X, Bai S, Zhang X, Ma X, Jia D, Shi X, et al. Xu Z. Enhanced tumor penetration and chemotherapy efficiency by covalent self-assembled nanomicelle responsive to tumor microenvironment. Biomacromolecules. 2019;20(7):2637–48.

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Xue J, Xu H. Combined administration of PTX and S-HM-3 in TPGS/Solutol micelle system for oncotarget therapy. Int J Nanomedicine. 2019;14:1011–26.

    PubMed  PubMed Central  Google Scholar 

  19. Pearson RG, Masud T, Blackshaw E, Naylor A, Hinchcliffe M, Jeffery K, et al. Nasal administration and plasma pharmacokinetics of parathyroid hormone peptide PTH 1-34 for the treatment of osteoporosis. Pharmaceutics. 2019;11(6):265.

    Article  CAS  PubMed Central  Google Scholar 

  20. Jin X, Zhang Z-H, Sun E, Tan X-B, Zhu F-X, Jia X-B. A novel drug–phospholipid complex loaded micelle for baohuoside I enhanced oral absorption: in vivo and in vivo evaluations. Drug Dev Ind Pharm. 2013;39(9):1421–30.

    Article  CAS  PubMed  Google Scholar 

  21. Chen S, Wu J, Tang Q, Xu C, Huang Y, Huang D, et al. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydr Polym. 2020;228:115398.

    Article  CAS  PubMed  Google Scholar 

  22. Wang F, Xiao X, Yuan Y, Liu J, Liu Y, Yi X. Solubilization of phloretin via steviol glycoside-based solid dispersion and micelles. Food Chem. 2020;308:125569.

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Hu R, Wang B, Gui Y, Cheng G, Gao S, et al. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake. Acta Pharm Sin B. 2017;7(3):353–60.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Prachi BS, Varsha BP. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta pharmaceutica Sinica. B. 2017;7(3):260–80.

    Google Scholar 

  25. Shen Y, Lindemeyer AK, Gonzalez C, Shao XM, Spigelman I, Olsen RW, et al. Dihydromyricetin as a novel anti-alcohol intoxication medication. J Neurosci. 2012;32(1):390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Egan TD, Obara S, Jenkins TE, Jaw-Tsai SS, Amagasu S, Cook DR, et al. AZD-3043: a novel, metabolically labile Sedative–hypnotic agent with rapid and predictable emergence from hypnosis. Anesthesiology. 2012;116(6):1267–77.

    Article  CAS  PubMed  Google Scholar 

  27. Bohnsack JP, Hughes BA, O'Buckley TK, Edokpolor K, Besheer J, Morrow AL. Histone deacetylases mediate GABAA receptor expression, physiology, and behavioral maladaptations in rat models of alcohol dependence. Neuropsychopharmacology. 2018;43(7):1518–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Y, Wang Z, Zhang L, Yin B, Lv L, He J, et al. Protective effect of gentiopicroside from Gentiana macrophylla Pall. in ethanol-induced gastric mucosal injury in mice. Phytother Res. 2018;32(2):259–66.

    Article  CAS  PubMed  Google Scholar 

  29. Arafa H. Protective role of carnitine esters against alcohol-induced gastric lesions in rats. Pharmacol Res. 2003;48(3):285–90.

    Article  CAS  PubMed  Google Scholar 

  30. Miyake K, Tsukui T, Wada K, Tatsuguchi A, Futagami S, Hiratsuka T, et al. Irritant-induced cyclooxygenase-2 is involved in the defense mechanism of the gastric mucosa in mice. J Gastroenterol. 2002;37(3):164–71.

    Article  CAS  PubMed  Google Scholar 

  31. Da Silva Monteiro CE, Franco AX, Sousa JAO, Matos VEA, de Souza EP, Fraga CAM, et al. Gastroprotective effects of N-acylarylhydrazone derivatives on ethanol-induced gastric lesions in mice are dependent on the NO/cGMP/KATP pathway. Biochem Pharmacol. 2019;169:113629.

    Article  PubMed  CAS  Google Scholar 

  32. Yetkin G, Celebi N, Ozer C, Gonul B, Ozogul C. The healing effect of TGF-alpha on gastric ulcer induced by acetylsalicylic acid in rats. Int J Pharm. 2004;277(1-2):163–72.

    Article  CAS  PubMed  Google Scholar 

  33. Monteiro CEdS, Franco ÁX, Sousa JAO, Matos VEA, Souza EPd, Fraga CAM, Barreiro EJ, Souza MHLPd, Soares PMG, Barbosa ALR. Gastroprotective effects of N-acylarylhydrazone derivatives on ethanol-induced gastric lesions in mice are dependent on the NO/cGMP/K ATP pathway. Biochem Pharmacol. 2019;169.

  34. Desai BN, Singhal G, Watanabe M, Stevanovic D, Lundasen T, Fisher FM, et al. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol Metab. 2017;6(11):1395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spruiell K, Gyamfi AA, Yeyeodu ST, Richardson RM, Gonzalez FJ, Gyamfi MA. Pregnane X receptor-humanized mice recapitulate gender differences in ethanol metabolism but not hepatotoxicity. J Pharmacol Exp Ther. 2015;354(3):459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000;50(1):179–88.

    Article  CAS  PubMed  Google Scholar 

  37. Xiaoying W, Yihang C, Zohra DF, Lifang Y, Jianping Z, Jing Y. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials. 2014;35(26).

  38. Dubey P, Barker SA, Craig DQM. Design and characterization of cyclosporine A-loaded nanofibers for enhanced drug dissolution. ACS Omega. 2020;5(2):1003–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mu L, Teo MM, Ning HZ, Tan CS, Feng SS. Novel powder formulations for controlled delivery of poorly soluble anticancer drug: application and investigation of TPGS and PEG in spray-dried particulate system. J Control Release. 2005;103(3):565–75.

    Article  CAS  PubMed  Google Scholar 

  40. Akhtar M, Imam SS, Afroz Ahmad M, Najmi AK, Mujeeb M, Aqil M. Neuroprotective study of Nigella sativa-loaded oral provesicular lipid formulation: in vitro and ex vivo study. Drug Deliv. 2014;21(6):487–94.

    Article  CAS  PubMed  Google Scholar 

  41. Ankit P, Krishna K, Yunmei S, Xin-Fu Z, Sanjay G. Curcumin-loaded self-nanomicellizing solid dispersion system: part I: development, optimization, characterization, and oral bioavailability. Drug Deliv Transl Res. 2018;8(5):1389–405.

    Article  CAS  Google Scholar 

  42. Manuela PO, Emmanuel G, Nicolas V, Jean-Pierre B, William C, Jean-Christophe O. Tissue distribution of indinavir administered as solid lipid nanocapsule formulation in mdr1a (+/+) and mdr1a (-/-) CF-1 mice. Pharm Res. 2005;22(11):1898–905.

    Article  CAS  Google Scholar 

  43. Yaoting S, Changyuan W, Qiang M, Zhihao L, Xiaokui H, Pengyuan S, et al. Targeting P-glycoprotein and SORCIN: Dihydromyricetin strengthens anti-proliferative efficiency of adriamycin via MAPK/ERK and Ca<sup>2+</sup> -mediated apoptosis pathways in MCF-7/ADR and K562/ADR. J Cell Physiol. 2018;233(4):3066–79.

    Article  CAS  Google Scholar 

  44. Pronko P, Bardina L, Satanovskaya V, Kuzmich A, Zimatkin S. Effect of chronic alcohol consumption on the ethanol- and acetaldehyde-metabolizing systems in the rat gastrointestinal tract. Alcohol Alcohol. 2002;37(3):229–35.

    Article  CAS  PubMed  Google Scholar 

  45. Nagy EL. The role of innate immunity in alcoholic liver disease. Alcohol Res. 2015;37(2).

  46. Cao S, Wang C, Yan J, Li X, Wen J. Hu C. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radic Biol Med. 2020;147:8–22.

    Article  CAS  PubMed  Google Scholar 

  47. Yadav A, Saini V, Arora S. MCP-1: Chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010;411(21):1570–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial support from the National Natural Science Foundation of China (No. 81603045), the Major Project of Education Department in Sichuan (No. 17ZA0117), the Key Open Fund of Key Laboratory of Coarse Grain Processing, Ministry of Agriculture (Grant No. 2019CC02), the Xinglin Scholars Research Enhancement Program (Grant No. XSGG2019005), the Chun-Hui Research Project of Ministry of Education of China (Grant No.20191083-127), the Provincial University Students Innovation and Entrepreneurship Training Programs (Grant No.201813705094), and Foundation of Chengdu Medical College (Grant No. CYZYB20-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Experiment Animal Administration Committee of Chengdu Medical College approved the animal experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Bao, S., Zhao, S. et al. Self-Assembled Micelles Improve the Oral Bioavailability of Dihydromyricetin and Anti-Acute Alcoholism Activity. AAPS PharmSciTech 22, 111 (2021). https://doi.org/10.1208/s12249-021-01983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01983-2

KEY WORDS

Navigation