Skip to main content

Advertisement

Log in

Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations

  • Review Article
  • Theme: Ocular Drug Delivery and Ophthalmic Formulations
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Ophthalmic diseases represent a significant problem as over 2 billion people worldwide suffer from vison impairment and blindness. Eye drops account for around 90% of ophthalmic medications but are limited in success due to poor patient compliance and low bioavailability. Low bioavailability can be attributed to short retention times in the eye caused by rapid tear turnover and the difficulty of drug diffusion through the multi-layered structure of the eye that includes lipid-rich endothelial and epithelial layers as well as the stroma which is high in water content. In addition, there are barriers such as tight junctional complexes in the corneal epithelium, lacrimal turnover, nasolacrimal drainage, blinking reflexes, efflux transporters, drug metabolism by ocular enzymes, and drug binding to or repulsion from conjunctival mucins, tear proteins, and melanin. In order to maximize transport through the cornea while minimizing drug loss through other pathways, researchers have developed numerous methods to improve eye drop formulations including the addition of viscosity enhancers, permeability enhancers, mucoadhesives, and vasoconstrictors, or using formulations that include puncta occlusion, nanocarriers, or prodrugs. This review explains the mechanism behind each of these methods, examines their history, analyzes previous and current research, evaluates future applications, and discusses the pros and cons of each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organisation. World report on vision. World Heal. Organ. 2019.

  2. Sapatnekar T, Chandra G. Ophthalmic drugs market by indication, type, dosage form, technology, distribution, and therapeutic class–global opportunity analysis and industry forecast, 2017–2023. Allied Mark Res 2017;

  3. Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993;37:435–56.

    Article  CAS  PubMed  Google Scholar 

  4. Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2012;39:1–19.

    Google Scholar 

  5. Lanier OL, Christopher K, Macoon RM, Yu Y, Sekar P, Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv. 2020;

  6. Rawas-Qalaji M, Williams CA. Advances in ocular drug delivery. Curr Eye Res. 2012;37:345–56.

    Article  CAS  PubMed  Google Scholar 

  7. Hillery A, Lloyd A, Swarbick J, editors. Drug delivery and targeting for pharmacists and pharmaceutical scientists. New York: Taylor & Francis; 2001.

    Google Scholar 

  8. Hosoya KI, Lee VHL, Kim KJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm. 2005;60:227–40.

    Article  CAS  PubMed  Google Scholar 

  9. Klyce SD, Crosson CE. Transport processes across the rabbit corneal epithelium: a review. Curr Eye Res. 1985;4:323–31.

    Article  CAS  PubMed  Google Scholar 

  10. Hodges RR, Dartt DA. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res. 2013;117:62–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Forrester J V., Dick AD, McMenamin PG, Roberts F, Pearlman E. Chapter 6 - General and ocular pharmacology. Eye Basic Sci Pract. 2015. p. 338–69.

  12. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12:348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mustafa M, Muthusamy P, Hussain S, Shimmi S, Sein M. Uveitis: pathogenesis, clinical presentations and treatment. IOSR J Pharm. 2014;4:42–7.

    Google Scholar 

  14. Runström G, Mann A, Tighe B. The fall and rise of tear albumin levels: a multifactorial phenomenon. Ocul Surf 2013. p. 165–80.

  15. Sebbag L, Moody LM, Mochel JP. Albumin levels in tear film modulate the bioavailability of medically-relevant topical drugs. Front Pharmacol. 2020;10:1560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Doft BH, Weiskopf J, Nilsson-Ehle I, Wingard LB. Amphotericin clearance in vitrectomized versus nonvitrectomized eyes. Ophthalmology. 1985;92:1601–5.

    Article  CAS  PubMed  Google Scholar 

  17. Christensen M, Larson T. Artificial tears: looking beneath the surface. Rev Cornea Contact Lenses. 2016.

  18. Jünemann AGM, Chorągiewicz T, Ozimek M, Grieb P, Rejdak R. Drug bioavailability from topically applied ocular drops. Does drop size matter? Ophthalmol J. 2016;1:29–35.

    Article  Google Scholar 

  19. Kompella UB, Kadam RS, Lee VH. Recent advances in ophthalmic drug delivery

  20. Shastri D, Shelat P, Shukla A, Patel P. Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm. 2010;1:113–20.

    Article  CAS  Google Scholar 

  21. Jones D. FASTtrack pharmaceutics-dosage form and design. J Chem Inf Model 2013.

  22. Kyyronen K, Urtti A. Improved ocular: systemic absorption ratio of timolol by viscous vehicle and phenylephrine. Investig Ophthalmol Vis Sci. 1990;31:1827–33.

    CAS  Google Scholar 

  23. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005. p. 1595–639.

  24. Johnson ME, Murphy PJ, Boulton M. Effectiveness of sodium hyaluronate eyedrops in the treatment of dry eye. Graefe’s Arch Clin Exp Ophthalmol Springer. 2006;244:109–12.

    Article  CAS  Google Scholar 

  25. Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release. 2020;321:1–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El-Kamel AH. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm Elsevier. 2002;241:47–55.

    Article  CAS  Google Scholar 

  27. Shastri DH, Patel LD, Parikh RK. Studies on in situ hydrogel: a smart way for safe and sustained ocular drug delivery. J Young Pharm E-Flow Medknow Publications. 2010;2:116–20.

    Article  CAS  Google Scholar 

  28. Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release Elsevier. 2001;73:205–11.

    Article  CAS  Google Scholar 

  29. Khamar BM. Ophthalmic formulation comprising a beta blocker and carbopol. European Patent EP1137407B1;

  30. Carlfors J, Edsman K, Petersson R, Jörnving K. Rheological evaluation of Gelrite® in situ gels for ophthalmic use. Eur J Pharm Sci Elsevier. 1998;6:113–9.

    Article  CAS  Google Scholar 

  31. Cohen S, Lobel E, Trevgoda A, Peled Y. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Control Release Elsevier. 1997;44:201–8.

    Article  CAS  Google Scholar 

  32. Kaur IP, Kanwar M. Ocular preparations: the formulation approach. Drug Dev Ind Pharm. 2002;28:473–93.

    Article  CAS  PubMed  Google Scholar 

  33. Moiseev RV, Morrison PWJ, Steele F, Khutoryanskiy VV. Penetration enhancers in ocular drug delivery. Pharmaceutics. 2019;11:321.

    Article  CAS  PubMed Central  Google Scholar 

  34. Aktaş Y, Ünlü N, Orhan M, Irkeç M, Hincal AA. Influence of hydroxypropyl β-cyclodextrin on the corneal permeation of pilocarpine. Drug Dev Ind Pharm. 2003;29:223–30.

    Article  PubMed  CAS  Google Scholar 

  35. Loftsson T, Stefánsson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm. 2017;531:413–23.

    Article  CAS  PubMed  Google Scholar 

  36. Jansook P, Stefánsson E, Thorsteinsdóttir M, Sigurdsson BB, Kristjánsdóttir SS, Bas JF, et al. Cyclodextrin solubilization of carbonic anhydrase inhibitor drugs: formulation of dorzolamide eye drop microparticle suspension. Eur J Pharm Biopharm. 2010;76:208–14.

    Article  CAS  PubMed  Google Scholar 

  37. Lorenzo-Veiga B, Diaz-Rodriguez P, Alvarez-Lorenzo C, Loftsson T, Sigurdsson HH. In vitro and ex vivo evaluation of nepafenac-based cyclodextrin microparticles for treatment of eye inflammation. Nanomaterials. 2020;10:709.

    Article  CAS  PubMed Central  Google Scholar 

  38. Morrison PWJ, Khutoryanskiy VV. Enhancement in corneal permeability of riboflavin using calcium sequestering compounds. Int J Pharm. 2014;472:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morrison PWJ, Porfiryeva NN, Chahal S, Salakhov IA, Lacourt C, Semina II, et al. Crown ethers: novel permeability enhancers for ocular drug delivery? Mol Pharm. 2017;14:3528–38.

    Article  CAS  PubMed  Google Scholar 

  40. Dai Y, Zhou R, Liu L, Lu Y, Qi J, Wu W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine. 2013;8:1921–33.

    PubMed  PubMed Central  Google Scholar 

  41. Liu C, Tai L, Zhang W, Wei G, Pan W, Lu W. Penetratin, a potentially powerful absorption enhancer for noninvasive intraocular drug delivery. Mol Pharm. 2014;11:1218–27.

    Article  CAS  PubMed  Google Scholar 

  42. Başaran E, Yazan Y. Ocular application of chitosan. Expert Opin. Drug Deliv. 2012. p. 701–12.

  43. Chatterjee B, Amalina N, Sengupta P, Mandal UK. Mucoadhesive polymers and their mode of action: a recent update. J Appl Pharm Sci. Open Science Publishers LLP Inc.; 2017;7:195–203.

  44. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 2005. p. 1556–68.

  45. Nanda A, Sahoo RN, Pramanik A, Mohapatra R, Pradhan SK, Thirumurugan A, et al. Drug-in-mucoadhesive type film for ocular anti-inflammatory potential of amlodipine: effect of sulphobutyl-ether-beta-cyclodextrin on permeation and molecular docking characterization. Colloids Surfaces B Biointerfaces. Elsevier B.V.; 2018;172:555–64.

  46. Szymańska E, Winnicka K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar. Drugs. 2015. p. 1819–46.

  47. Boddupalli BM, Mohammed ZNK, Nath AR, Banji D. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010. p. 381–7.

  48. Yamaguchi M, Ueda K, Isowaki A, Ohtori A, Takeuchi H, Ohguro N, et al. Mucoadhesive properties of chitosan-coated ophthalmic lipid emulsion containing indomethacin in tear fluid. Biol Pharm Bull. 2009;32:1266–71.

    Article  CAS  PubMed  Google Scholar 

  49. Pai R V., Monpara JD, Vavia PR. Exploring molecular dynamics simulation to predict binding with ocular mucin: an in silico approach for screening mucoadhesive materials for ocular retentive delivery systems. J Control Release. Elsevier B.V.; 2019;309:190–202.

  50. Horvát G, Gyarmati B, Berkó S, Szabó-Révész P, Szilágyi BÁ, Szilágyi A, et al. Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. Eur J Pharm Sci Elsevier. 2015;67:1–11.

    Article  CAS  Google Scholar 

  51. Luo LJ, Nguyen DD, Lai JY. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. Mater Sci Eng C Elsevier. 2020;115:111095.

    Article  CAS  Google Scholar 

  52. Bernkop-Schnürch A, Guggi D, Pinter Y. Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J Control Release. 2004;94:177–86.

    Article  PubMed  CAS  Google Scholar 

  53. Lai JY, Luo LJ, Nguyen DD. Multifunctional glutathione-dependent hydrogel eye drops with enhanced drug bioavailability for glaucoma therapy. Chem Eng J Elsevier. 2020;402:126190.

    Article  CAS  Google Scholar 

  54. Graça A, Gonçalves LM, Raposo S, Ribeiro HM, Marto J. Useful in vitro techniques to evaluate the mucoadhesive properties of hyaluronic acid-based ocular delivery systems. Pharmaceutics. 2018;10:110.

    Article  PubMed Central  CAS  Google Scholar 

  55. Shumway CL, Wade M. Anatomy, head and neck, eye conjunctiva. StatPearls. 2018.

  56. Farkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophthalmol. 2016;10:2433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frishman WH, Kowalski M, Nagnur S, Warshafsky S, Sica D. Cardiovascular considerations in using topical, oral, and intravenous drugs for the treatment of glaucoma and ocular hypertension: focus on β-adrenergic blockade. Heart Dis. 2001;3:386–97.

    Article  CAS  PubMed  Google Scholar 

  58. Kyyrönen K, Urtti A. Effects of epinephrine pretreatment and solution pH on ocular and systemic absorption of ocularly applied timolol in rabbits. J Pharm Sci. 1990;79:688–91.

    Article  PubMed  Google Scholar 

  59. Urtti A, Kyyrönen K. Ophthalmic epinephrine, phenylephrine, and pilocarpine affect the systemic absorption of ocularly applied timolol. J Ocul Pharmacol Ther. 1989;5:127–32.

    Article  CAS  Google Scholar 

  60. Urtti A. Cardiac effects of different eyedrop preparations of timolol in rabbits. Curr Eye Res. 1992;11:469–73.

    Article  PubMed  Google Scholar 

  61. Suzuki G, Kunikane E, Shinno K, Kozai S, Kurata M, Kawamura A. Ocular and systemic pharmacokinetics of brimonidine and timolol after topical administration in rabbits: comparison between fixed-combination and single drugs. Ophthalmol Therapy. 2020;9:115–25.

    Article  Google Scholar 

  62. Miller DJ, Li SK, Tuitupou AL, Kochambilli RP, Papangkorn K, Mix DC, et al. Passive and oxymetazoline-enhanced delivery with a lens device: pharmacokinetics and efficacy studies with rabbits. J Ocul Pharmacol Ther. 2008;24:385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rudnick DE, Noonan JS, Geroski DH, Prausnitz MR, Edelhauser HF. The effect of intraocular pressure on human and rabbit scleral permeability. Investig Ophthalmol Vis Sci. 1999;40:3054–8.

    CAS  Google Scholar 

  64. Bielory BP, Shah SP. O’Brien TP. Perez VL: Bielory L. Emerging therapeutics for ocular surface disease. Curr. Opin. Allergy Clin. Immunol; 2016. p. 477–86

    Google Scholar 

  65. Van Buskirk EM, Bacon DR, Fahrenbach WH. Ciliary vasoconstriction after topical adrenergic drugs. Am J Ophthalmol. 1990;109:511–7.

    Article  PubMed  Google Scholar 

  66. Luo X, Shen YM, Jiang MN, Lou XF, Shen Y. Ocular blood flow autoregulation mechanisms and methods. J. Ophthalmol. 2015. p. 864–71.

  67. Gilbard JP, Rossi SR, Azar DT, Heyda KG. Effect of punctal occlusion by freeman silicone plug insertion on tear osmolarity in dry eye disorders. CLAO J. 1989;15:216–8.

    CAS  PubMed  Google Scholar 

  68. Chen M, Choi SY. Preliminary outcomes of temporary collagen punctal plugs for patients with dry eye and glaucoma. Med Hypothesis, Discov Innov Ophthalmol. 2020;9:56–60.

    Google Scholar 

  69. Aritürk N, Öge I, Erkan D, Süllü Y, Şahin M. The effects of nasolacrimal canal blockage on topical medications for glaucoma. Acta Ophthalmol Scand. 1996;74:411–3.

    Article  PubMed  Google Scholar 

  70. Tong L, Zhou L, Beuerman R, Simonyi S, Hollander DA, Stern ME. Effects of punctal occlusion on global tear proteins in patients with dry eye. Ocul Surf. 2017;15:736–41.

    Article  PubMed  Google Scholar 

  71. Balaram M, Schaumberg DA, Dana MR. Efficacy and tolerability outcomes after punctal occlusion with silicone plugs in dry eye syndrome. Am J Ophthalmol. 2001;131:30–6.

    Article  CAS  PubMed  Google Scholar 

  72. Liu Y, Hirayama M, Cui X, Connell S, Kawakita T, Tsubota K. Effectiveness of autologous serum eye drops combined with punctal plugs for the treatment of Sjögren syndrome-related dry eye. Cornea. 2015;34:1214–20.

    Article  PubMed  Google Scholar 

  73. Bartlett JD, Boan K, Corliss D, Gaddie IB. Efficacy of silicone punctal plugs as adjuncts to topical pharmacotherapy of glaucoma--a pilot study. Punctal Plugs in Glaucoma Study Group. J Am Optom Assoc. 1996;67:664–8.

    CAS  PubMed  Google Scholar 

  74. Roberts CW, Carniglia PE, Brazzo BG. Comparison of topical cyclosporine, punctal occlusion, and a combination for the treatment of dry eye. Cornea. 2007;26:805–9.

    Article  PubMed  Google Scholar 

  75. Opitz DL, Tung S, Jang US, Park JJ. Silicone punctal plugs as an adjunctive therapy for open-angle glaucoma and ocular hypertension. Clin Exp Optom. 2011;94:438–42.

    Article  PubMed  Google Scholar 

  76. Sherwin JC, Ratnarajan G, Elahi B, Bilkiewicz-Pawelec A, Salmon JF. Effect of a punctal plug on ocular surface disease in patients using topical prostaglandin analogues: a randomized controlled trial. Clin Exp Ophthalmol. 2018;46:888–94.

    Article  PubMed  Google Scholar 

  77. Gupta C, Chauhan A. Ophthalmic delivery of cyclosporine A by punctal plugs. J Control Release. 2011;150:70–6.

    Article  CAS  PubMed  Google Scholar 

  78. Blizzard C, Desai A, Driscoll A. Pharmacokinetic studies of sustained-release depot of dexamethasone in beagle dogs. J Ocul Pharmacol Ther. 2016;32:595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee A, Blair HA. Dexamethasone intracanalicular insert: a review in treating post-surgical ocular pain and inflammation. Drugs. 2020;80:1101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Best AL, Labetoulle M, Legrand M, M’garrech M, Barreau E, Rousseau A. Punctal and canalicular plugs: indications, efficacy and safety. J Fr Ophtalmol. 2019. p. E95–104.

  81. Sung Y, Park JS, Lew H. Measurement of lacrimal punctum using spectralis domain anterior optical coherence tomography. Acta Ophthalmol. 2017;95:e619–24.

    Article  CAS  PubMed  Google Scholar 

  82. Sakamoto A, Kitagawa K, Tatami A. Efficacy and retention rate of two types of silicone punctal plugs in patients with and without Sjögren syndrome. Cornea. 2004;23:249–54.

    Article  PubMed  Google Scholar 

  83. Rumelt S, Remulla H, Rubin PAD. Silicone punctal plug migration resulting in dacryocystitis and canaliculitis. Cornea. 1997;16:377–9.

    Article  CAS  PubMed  Google Scholar 

  84. Kim BM, Osmanovic SS, Edward DP. Pyogenic granulomas after silicone punctal plugs: a clinical and histopathologic study. Am J Ophthalmol. 2005;139:678–84.

    Article  PubMed  Google Scholar 

  85. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2020;

  86. Almeida H, Amaral MH, Lobão P, Silva AC, Lobo JMS. Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: present and future considerations. J Pharm Pharm Sci. 2014;17:278–93.

    Article  PubMed  Google Scholar 

  87. Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10:28.

    Article  PubMed Central  CAS  Google Scholar 

  88. Zimmer A, Kreuter J. Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev. 1995;16:61–73.

    Article  CAS  Google Scholar 

  89. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13:144–51.

    Article  CAS  PubMed  Google Scholar 

  90. Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull. 2010;58:1423–30.

    Article  CAS  Google Scholar 

  91. Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, et al. Chitosan and its derivatives for ocular delivery formulations: recent advances and developments. Polymers (Basel). 2020;12:1519.

    Article  CAS  Google Scholar 

  92. De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224:159–68.

    Article  PubMed  Google Scholar 

  93. De Campos AM, Diebold Y, Carvalho ELS, Sánchez A, Alonso MJ. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res. 2004;21:803–10.

    Article  PubMed  Google Scholar 

  94. De Salamanca AE, Diebold Y, Calonge M, García-Vazquez C, Callejo S, Vila A, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Investig Ophthalmol Vis Sci. 2006;47:1416–25.

    Article  Google Scholar 

  95. Chhonker YS, Prasad YD, Chandasana H, Vishvkarma A, Mitra K, Shukla PK, et al. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol. 2015;72:1451–8.

    Article  CAS  PubMed  Google Scholar 

  96. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:502–22.

    Article  CAS  Google Scholar 

  97. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3:1377–97.

  98. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6:324–33.

    Article  CAS  PubMed  Google Scholar 

  99. Cañadas C, Alvarado H, Calpena AC, Silva AM, Souto EB, García ML, et al. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int J Pharm. 2016;511:719–27.

    Article  PubMed  CAS  Google Scholar 

  100. Gonzalez-Pizarro R, Parrotta G, Vera R, Sánchez-López E, Galindo R, Kjeldsen F, et al. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine. 2019;14:3089–104.

    Article  CAS  PubMed  Google Scholar 

  101. Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, et al. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18:290–7.

    Article  CAS  PubMed  Google Scholar 

  102. Yamaguchi M, Yasueda SI, Isowaki A, Yamamoto M, Kimura M, Inada K, et al. Formulation of an ophthalmic lipid emulsion containing an anti-inflammatory steroidal drug, difluprednate. Int J Pharm. 2005;301:121–8.

    Article  CAS  PubMed  Google Scholar 

  103. Gökçe EH, Sandri G, Eǧrilmez S, Bonferoni MC, Güneri T, Caramella C. Cyclosporine a-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res. 2009;34:996–1003.

    Article  PubMed  CAS  Google Scholar 

  104. Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye–part II-ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2017;110:58–69.

    Article  PubMed  CAS  Google Scholar 

  105. Diebold Y, Jarrín M, Sáez V, Carvalho ELS, Orea M, Calonge M, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials. 2007;28:1553–64.

    Article  CAS  PubMed  Google Scholar 

  106. Lee VHL, Li VHK. Prodrugs for improved ocular drug delivery. Adv Drug Deliv Rev 1989. p. 1–38.

  107. Huttunen KM, Raunio H, Rautio J. Prodrugs—from serendipity to rational design. Koulu M, editor. Pharmacol Rev. 2011;63:750 LP – 771.

  108. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7:255–70.

    Article  CAS  PubMed  Google Scholar 

  109. Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol Taylor & Francis; 2020;1–22.

  110. Åhlén M, Tummala GK, Mihranyan A. Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications. Int J Pharm. 2018;536:73–81.

    Article  PubMed  CAS  Google Scholar 

  111. Majumdar S, Duvvuri S, Mitra AK. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv Drug Deliv Rev. 2004;56:1437–52.

    Article  CAS  PubMed  Google Scholar 

  112. Barot M, Bagui M, R. Gokulgandhi M, K. Mitra A. Prodrug strategies in ocular drug delivery. Med Chem (Los Angeles). 2012;8:753–68.

  113. Chau-po Wei, Janet A. Anderson and IL. Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Investig Ophthalmol Vis Sci. 1978;17:315–21.

  114. Chang SC, Bundgaard H, Buur A, Lee VHL. Low dose O-butyryl timolol improves the therapeutic index of timolol in the pigmented rabbit. Investig Ophthalmol Vis Sci. 1988;29:626–9.

    CAS  Google Scholar 

  115. Chang SC, Bundgaard H, Buur A, Lee VHL. Improved corneal penetration of timolol by prodrugs as a means to reduce systemic drug load. Investig Ophthalmol Vis Sci. 1987;28:487–91.

    CAS  Google Scholar 

  116. Chang SC, Chien DS, Bundgaard H, Lee VHL. Relative effectiveness of prodrug and viscous solution approaches in maximizing the ratio of ocular to systemic absorption of topically applied timolol. Exp Eye Res. 1988;46:59–69.

    Article  CAS  PubMed  Google Scholar 

  117. Järvinen T, Järvinen K. Prodrugs for improved ocular drug delivery. Adv Drug Deliv Rev. 1996;19:203–24.

    Article  Google Scholar 

  118. Robsinson JR. Prodrugs: topical and ocular drug delivery. JAMA Opthalmology. 1993;111:908.

    Google Scholar 

Download references

Funding

We received financial support from the CMMI program of the National Science Foundation (Grant#1762625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Chauhan.

Additional information

Guest Editors: Qingguo Xu and Iok-Hou Pang

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanier, O.L., Manfre, M.G., Bailey, C. et al. Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations. AAPS PharmSciTech 22, 107 (2021). https://doi.org/10.1208/s12249-021-01977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01977-0

KEY WORDS

Navigation