Skip to main content

Advertisement

Log in

Evaluation of the Impacts of Formulation Parameters on the Pharmacokinetics and Bioequivalence of Risperidone Orodispersible Film: a Physiologically Based Pharmacokinetic Modeling Approach

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the impacts of the formulation parameters on the pharmacokinetics and bioequivalence of risperidone orodispersible film (ODF) using physiologically based pharmacokinetic model. The pharmacokinetic profiles of two risperidone ODFs, which exhibit different in vitro dissolution, were examined in Beagle dogs after supralingual administration. Subsequently, a physiologically based pharmacokinetic (PBPK) model was constructed to evaluate the in vivo performance of risperidone ODF. The parameter sensitivity analysis (PSA) was used to access the impacts of formulation parameters on the pharmacokinetics of risperidone. Moreover, the validated PBPK model was applied to predict human pharmacokinetic profiles and examine the bioequivalence of these two ODFs. These two ODFs displayed similar risperidone pharmacokinetic profiles in dogs. The parameter sensitivity analysis indicated that the changes in the solubility, particle size, particle density, and diffusion coefficient did not have obvious influence on the in vivo properties of risperidone ODF. Alternation of the in vitro complete dissolution time in water from 15 to 30 min led to a 30% decrease in Cmax and 20% of increase in Tmax. AUC0-∞ would be decreased if risperidone was not fully released within 1 h. As both ODFs completely released risperidone within 15 min, the difference in the extent of in vivo absorption, intestinal regional absorption location, and plasma concentration-time curves between these two ODFs was almost negligible. Consequently, a bioequivalence was foreseen in humans. The in vitro cumulative dissolution percentage in water at 15 min was found to be the major determinant on the in vivo properties of risperidone ODF. PBPK modeling appears to be an innovative strategy to guide the development of risperidone ODF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gaebel W, Zielasek J. Schizophrenia in 2020: trends in diagnosis and therapy. Psychiatry Clin Neurosci. 2015;69(11):661–73.

    Article  Google Scholar 

  2. Jones C, Hacker D, Cormac I, Meaden A, Irving CB. Cognitive behaviour therapy versus other psychosocial treatments for schizophrenia. Cochrane Database Syst Rev. 2012;4:CD008712.

    PubMed Central  Google Scholar 

  3. Sheehan JJ, Sliwa JK, Amatniek JC, Grinspan A, Canuso CM. Atypical antipsychotic metabolism and excretion. Curr Drug Metab. 2010;11(6):516–25.

    Article  CAS  Google Scholar 

  4. Shen WW. The metabolism of atypical antipsychotic drugs: an update. Ann Clin Psychiatry. 1999;11(3):145–58.

    Article  CAS  Google Scholar 

  5. Khames A. Investigation of the effect of solubility increase at the main absorption site on bioavailability of BCS class II drug (risperidone) using liquisolid technique. Drug Deliv. 2017;24(1):328–38.

    Article  CAS  Google Scholar 

  6. Meuldermans W, Hendrickx J, Mannens G, Lavrijsen K, Janssen C, Bracke J, et al. The metabolism and excretion of risperidone after oral administration in rats and dogs. Drug Metab Dispos. 1994;22(1):129–38.

    CAS  PubMed  Google Scholar 

  7. de Leon J, Wynn G, Sandson NB. The pharmacokinetics of paliperidone versus risperidone. Psychosomatics. 2010;51(1):80–8.

    Article  Google Scholar 

  8. Huang ML, Van Peer A, Woestenborghs R, De Coster R, Heykants J, Jansen AA, et al. Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin Pharmacol Ther. 1993;54(3):257–68.

    Article  CAS  Google Scholar 

  9. Mannens G, Huang ML, Meuldermans W, Hendrickx J, Woestenborghs R, Heykants J. Absorption, metabolism, and excretion of risperidone in humans. Drug Metab Dispos. 1993;21(6):1134–41.

    CAS  PubMed  Google Scholar 

  10. Lam JK, Xu Y, Worsley A, Wong IC. Oral transmucosal drug delivery for pediatric use. Adv Drug Deliv Rev. 2014;73(6):50–62.

    Article  CAS  Google Scholar 

  11. Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv. 2011;8(3):299–316.

    Article  CAS  Google Scholar 

  12. Madhav NV, Shakya AK, Shakya P, Singh K. Orotransmucosal drug delivery systems: a review. J Control Release. 2009;140(1):2–11.

    Article  CAS  Google Scholar 

  13. Poston KL, Waters C. Zydis selegiline in the management of Parkinson’s disease. Expert Opin Pharmacother. 2007;8(15):2615–24.

    Article  CAS  Google Scholar 

  14. Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci. 2015;75(7):2–9.

    Article  CAS  Google Scholar 

  15. Bouzom F, Ball K, Perdaems N, Walther B. Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs? Biopharm Drug Dispos. 2012;33(2):55–71.

    Article  CAS  Google Scholar 

  16. Chetty M, Johnson TN, Polak S, Salem F, Doki K, Rostami-Hodjegan A. Physiologically based pharmacokinetic modelling to guide drug delivery in older people. Adv Drug Deliv Rev. 2018;135(10):85–96.

    Article  CAS  Google Scholar 

  17. Duan P, Fisher JW, Yoshida K, Zhang L, Burckart GJ, Wang J. Physiologically based pharmacokinetic prediction of linezolid and emtricitabine in neonates and infants. Clin Pharmacokinet. 2017;56(4):383–94.

    Article  CAS  Google Scholar 

  18. Kim Y, Hatley O, Rhee SJ, Yi S, Lee HA, Yoon S, et al. Development of a Korean-specific virtual population for physiologically based pharmacokinetic modelling and simulation. Biopharm Drug Dispos. 2019;40(3–4):135–50.

    Article  CAS  Google Scholar 

  19. Schlender JF, Meyer M, Thelen K, Krauss M, Willmann S, Eissing T, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet. 2016;55(12):1573–89.

    Article  CAS  Google Scholar 

  20. Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn. 2016;43(5):481–504.

    Article  CAS  Google Scholar 

  21. Miller NA, Reddy MB, Heikkinen AT, Lukacova V, Parrott N. Physiologically based pharmacokinetic modelling for first-in-human predictions: an updated model building strategy illustrated with challenging industry case studies. Clin Pharmacokinet. 2019;58(6):727–46.

    Article  CAS  Google Scholar 

  22. Zhang H, Wang DH, Wang B, Yang QM, Chen F. Preparation and in vitro/in vivo evaluation of risperidone orodispersible films. Chin J Pharm. 2017;48(3):406–12.

    Google Scholar 

  23. Chen F, Liu HR, Wang B, Yang LL, Cai WM, Jiao Z, et al. Physiologically based pharmacokinetic modeling to understand the absorption of risperidone orodispersible film. Front Pharmacol. 2020;2(10):1692–701.10:1692. https://doi.org/10.3389/fphar.2019.01692.

    Article  CAS  Google Scholar 

  24. Mannens G, Meuldermans W, Snoeck E, Heykants J. Plasma protein binding of risperidone and its distribution in blood. Psychopharmacology. 1994;114(4):566–72.

    Article  CAS  Google Scholar 

  25. PMDA label. http://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/230127_117903 8C1078_1_24

  26. Wong YC, Centanni M, de Lange ECM. Physiologically based modeling approach to predict dopamine D2 receptor occupancy of antipsychotics in brain: translation from rat to human. J Clin Pharmacol. 2019;59(5):731–47.

    Article  CAS  Google Scholar 

  27. Goteti K, Garner CE, Mahmood I. Prediction of human drug clearance from two species: a comparison of several allometric methods. J Pharm Sci. 2010;99(3):1601–13.

    Article  CAS  Google Scholar 

  28. Vermeir M, Naessens I, Remmerie B, Mannens G, Hendrickx J, Sterkens P, et al. Absorption, metabolism, and excretion of paliperidone, a new monoaminergic antagonist, in humans. Drug Metab Dispos. 2008;36(4):769–79.

    Article  CAS  Google Scholar 

  29. Yasui-Furukori N, Hidestrand M, Spina E, Facciola G, Scordo MG, Tybring G. Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab Dispos. 2001;29(10):1263–8.

    CAS  PubMed  Google Scholar 

  30. Doki K, Darwich AS, Patel N, Rostami-Hodjegan A. Virtual bioequivalence for achlorhydric subjects: the use of PBPK modelling to assess the formulation-dependent effect of achlorhydria. Eur J Pharm Sci. 2017;109:111–20.

    Article  CAS  Google Scholar 

  31. Cristofoletti R, Patel N, Dressman JB. Assessment of bioequivalence of weak base formulations under various dosing conditions using physiologically based pharmacokinetic simulations in virtual populations. case examples: ketoconazole and posaconazole. J Pharm Sci. 2017;106(2):560–9.

    Article  CAS  Google Scholar 

  32. Mitra A, Kesisoglou F, Dogterom P. Application of absorption modeling to predict bioequivalence outcome of two batches of etoricoxib tablets. AAPS PharmSciTech. 2015;16(1):76–84.

    Article  CAS  Google Scholar 

  33. Li H, Sun J, Sui X, Yan Z, Sun Y, Liu X, et al. Structure-based prediction of the nonspecific binding of drugs to hepatic microsomes. AAPS J. 2009;11(2):364–70.

    Article  CAS  Google Scholar 

  34. Hens B, Talattof A, Paixao P, Bermejo M, Tsume Y, Lobenberg R, et al. Measuring the impact of gastrointestinal variables on the systemic outcome of two suspensions of posaconazole by a PBPK model. AAPS J. 2018;20(3):57–70.

    Article  Google Scholar 

  35. Gutierrez R, Lee PI, Huang ML, Woestenborghs R. Risperidone: effects of formulations on oral bioavailability. Pharmacotherapy. 1997;17(3):599–605.

    CAS  Google Scholar 

  36. Zhou L, Tong X, Sharma P, Xu H, Al-Huniti N, Zhou D. Physiologically based pharmacokinetic modelling to predict exposure differences in healthy volunteers and subjects with renal impairment: ceftazidime case study. Basic Clin Pharmacol Toxicol. 2019;125(2):100–7.

    CAS  Google Scholar 

  37. Kesisoglou F. The role of physiologically based oral absorption modelling in formulation development under a quality by design paradigm. J Pharm Sci. 2017;106(4):944–9.

    Article  CAS  Google Scholar 

  38. Zhang X, Wen H, Fan J, Vince B, Li T, Gao W, et al. Integrating in vitro, modeling, and in vivo approaches to investigate warfarin bioequivalence. CPT Pharmacometrics Syst Pharmacol. 2017;6(8):523–31.

  39. Shen J, Choi S, Qu W, Wang Y, Burgess DJ. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J Control Release. 2015;218(11):2–12.

    Article  CAS  Google Scholar 

  40. Saibi Y, Sato H, Tachiki H. Developing in vitro-in vivo correlation of risperidone immediate release tablet. AAPS PharmSciTech. 2012;13(3):890–5.

  41. Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release. 2017;255(6):27–35.

    Article  CAS  Google Scholar 

  42. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:300–21.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the PDH-SPFDU Joint Research Fund (RHJJ2017-05), the National Natural Science Foundation of China (81473409), the Shanghai Science and Technology Innovation Fund (18140900900), and the Foundation of Shanghai Science and Technology Commission (18DZ2290500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Xiang.

Ethics declarations

Human and Animal Rights

This study was approved by the Animal Management and Ethic Committee of the China State Institute of Pharmaceutical Industry.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Liu, H., Wang, B. et al. Evaluation of the Impacts of Formulation Parameters on the Pharmacokinetics and Bioequivalence of Risperidone Orodispersible Film: a Physiologically Based Pharmacokinetic Modeling Approach. AAPS PharmSciTech 21, 245 (2020). https://doi.org/10.1208/s12249-020-01728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01728-7

Key Words

Navigation