Skip to main content

Advertisement

Log in

Preparation of Deoxycholate-Modified Docetaxel-Cimetidine Complex Chitosan Nanoparticles to Improve Oral Bioavailability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Docetaxel (DTX) was effective in the treatment of neoplasm but could only be administered intravenously with the poor oral bioavailability owing to its undesirable solubility, remarkably metabolic conversion, and other factors. Cimetidine (CMD), a classic CYP3A4 isozyme inhibitor, had exhibited a wide range of inhibition on the metabolism of many drugs. The aim of this study was to construct the novel docetaxel-cimetidine (DTX-CMD) complex and the chitosan-deoxycholate nanoparticles based on it to confirm whether this formulation could show advantages in terms of solubility, dissolution rate, small intestinal absorption, and oral bioavailability in comparison with the pure drug. The solid-state characterization was carried out by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), and simultaneous DSC-TGA (SDT). Dissolution rate and kinetic solubility study were determined by evaluating the amount of DTX in distilled water and phosphate buffer solution (pH = 7.4), respectively. And small intestinal absorption and pharmacokinetics study were conducted in rats. The results of this study demonstrated that we successfully constructed DTX-CMD complex and its chitosan-deoxycholate nanoparticles. Furthermore, the DTX-CMD complex increased the solubility of DTX by 2.3-fold and 2.1-fold in distilled water and phosphate buffer solution, respectively. The ultimate accumulative amount of DTX-CMD complex nanoparticles through rat small intestinal in 2 h was approximately 4.9-fold and the oral bioavailability of the novel nanoparticles was enhanced 2.8-fold, compared with the pure DTX. The superior properties of the complex nanoparticles could both improve oral bioavailability and provide much more feasibility for other formulations of DTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Zheng X, Sun Y, Ren Z, Li X, Cui G. RGD-fatty alcohol-modified docetaxel liposomes improve tumor selectivity in vivo. Int J Pharm. 2014;468(1–2):133–41.

    CAS  PubMed  Google Scholar 

  2. Moes JJ, Koolen SL, Huitema AD, Schellens JH, Beijnen JH, Nuijen B. Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (ModraDoc001). Int J Pharm. 2011;420(2):244–50.

    Article  CAS  Google Scholar 

  3. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–16.

    Article  Google Scholar 

  4. Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs III: formulation using drug delivery systems. Drug Discov Today. 2013;18(1–2):99–104.

    Article  CAS  Google Scholar 

  5. Wu J, Shen Q, Fang L. Sulfobutylether-beta-cyclodextrin/chitosan nanoparticles enhance the oral permeability and bioavailability of docetaxel. Drug Dev Ind Pharm. 2013;39(7):1010–9.

    Article  CAS  Google Scholar 

  6. Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017;260:202–12.

    Article  CAS  Google Scholar 

  7. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59(7):617–30.

    Article  CAS  Google Scholar 

  8. Chadha R, Saini A, Arora P, Bhandari S. Pharmaceutical cocrystals: a novel approach for oral bioavailability enhancement of drugs. Crit Rev Ther Drug Carrier Syst. 2012;29(3):183–218.

    Article  CAS  Google Scholar 

  9. Fan X, Chen J, Shen Q. Docetaxel-nicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery. Int J Pharm. 2013;458(2):296–304.

    Article  CAS  Google Scholar 

  10. Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv Drug Deliv Rev. 2017;117:3–24.

    Article  CAS  Google Scholar 

  11. Healy AM, Worku ZA, Kumar D, Madi AM. Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Adv Drug Deliv Rev. 2017;117:25–46.

    Article  CAS  Google Scholar 

  12. Wu J, Deng C, Meng F, Zhang J, Sun H, Zhong Z. Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. J Control Release. 2017;259:76–82.

    Article  CAS  Google Scholar 

  13. Ghassami E, Varshosaz J, Jahanian-Najafabadi A, Minaiyan M, Rajabi P, Hayati E. Pharmacokinetics and in vitro/in vivo antitumor efficacy of aptamer-targeted Ecoflex((R)) nanoparticles for docetaxel delivery in ovarian cancer. Int J Nanomedicine. 2018;13:493–504.

    Article  CAS  Google Scholar 

  14. Lee E, Kim H, Lee IH, Jon S. In vivo antitumor effects of chitosan-conjugated docetaxel after oral administration. J Control Release. 2009;140(2):79–85.

    Article  CAS  Google Scholar 

  15. Malingre MM, Richel DJ, Beijnen JH, Rosing H, Koopman FJ, Ten Bokkel Huinink WW, et al. Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J Clin Oncol. 2001;19(4):1160–6.

    Article  CAS  Google Scholar 

  16. Song SY, Kim KP, Jeong SY, Park J, Park J, Jung J, et al. Polymeric nanoparticle-docetaxel for the treatment of advanced solid tumors: phase I clinical trial and preclinical data from an orthotopic pancreatic cancer model. Oncotarget. 2016;7(47):77348–57.

    PubMed  PubMed Central  Google Scholar 

  17. Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH. Preclinical pharmacokinetics of paclitaxel and docetaxel. Anti-Cancer Drugs. 1998;9(1):1–17.

    Article  CAS  Google Scholar 

  18. Baker SD, Sparreboom A, Verweij J. Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet. 2006;45(3):235–52.

    Article  CAS  Google Scholar 

  19. Brogden RN, Heel RC, Speight TM, Avery GS. Cimetidine: a review of its pharmacological properties and therapeutic efficacy in peptic ulcer disease. Drugs. 1978;15(2):93–131.

    Article  CAS  Google Scholar 

  20. Akiyoshi T, Saito T, Murase S, Miyazaki M, Murayama N, Yamazaki H, et al. Comparison of the inhibitory profiles of itraconazole and cimetidine in cytochrome P450 3A4 genetic variants. Drug Metab Dispos. 2011;39(4):724–8.

    Article  CAS  Google Scholar 

  21. Peng J, Yang Q, Li W, Tan L, Xiao Y, Chen L, et al. Erythrocyte-membrane-coated prussian blue/manganese dioxide nanoparticles as H2O2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy. 2017;9(51):44410–22.

  22. Li P, Chen X, Shen Y, Li H, Zou Y, Yuan G, et al. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J Control Release. 2019;300:52–63.

    Article  CAS  Google Scholar 

  23. Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 2018;151:13–23.

    Article  CAS  Google Scholar 

  24. Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials. 2017;147:145–54.

    Article  CAS  Google Scholar 

  25. Kim KS, Suzuki K, Cho H, Youn YS, Bae YH. Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. 2018;12(9):8893–900.

  26. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419(1–2):1–11.

    Article  CAS  Google Scholar 

  27. Kokalj M, Kolar J, Trafela T, Kreft S. Differences among Epilobium and Hypericum species revealed by four IR spectroscopy modes: transmission, KBr tablet, diffuse reflectance and ATR. Phytochem Anal. 2011;22(6):541–6.

    Article  CAS  Google Scholar 

  28. Agueros M, Ruiz-Gaton L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G, et al. Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci. 2009;38(4):405–13.

    Article  CAS  Google Scholar 

  29. Fan R, Wang Y, Han B, Luo Y, Zhou L, Peng X, et al. Docetaxel load biodegradable porous microspheres for the treatment of colorectal peritoneal carcinomatosis. Int J Biol Macromol. 2014;69:100–7.

    Article  CAS  Google Scholar 

  30. Tantishaiyakul V, Songkro S, Suknuntha K, Permkum P, Pipatwarakul P. Crystal structure transformations and dissolution studies of cimetidine-piroxicam coprecipitates and physical mixtures. AAPS PharmSciTech. 2009;10(3):789–95.

    Article  CAS  Google Scholar 

  31. Cheng H, Liu H, Zhang Y, Zou G. Interaction of the docetaxel with human serum albumin using optical spectroscopy methods. J Lumin. 2009;129(10):1196–203.

    Article  CAS  Google Scholar 

  32. Tudor AM, Davies MC, Melia CD, Lee DC, Mitchell RC, Hendra PJ, et al. The applications of near-infrared Fourier transform Raman spectroscopy to the analysis of polymorphic forms of cimetidine. Spectrochim Acta A: Mol Spectrosc. 1991;47(9):1389–93.

    Article  Google Scholar 

  33. de Souza FS, Macedo RO, Veras JWE. Studies of cimetidine pre-formulated and tablets for TG and DSC coupled to the photovisual system. Thermochim Acta. 2002;392–393:99–106.

    Article  Google Scholar 

  34. Chen Y, Chen C, Zheng J, Chen Z, Shi Q, Liu H. Development of a solid supersaturatable self-emulsifying drug delivery system of docetaxel with improved dissolution and bioavailability. Biol Pharm Bull. 2011;34(2):278–86.

    Article  CAS  Google Scholar 

  35. Jayasankar A, Good DJ, Rodriguez-Hornedo N. Mechanisms by which moisture generates cocrystals. Mol Pharm. 2007;4(3):360–72.

    Article  CAS  Google Scholar 

  36. Glezer AM, Sundeev RV, Shalimova AV. The cyclic character of phase transformations of the crystal ⇔ amorphous state type during severe plastic deformation of the Ti50Ni25Cu25 alloy. Dokl Phys. 2011;56(9):476–8.

    Article  CAS  Google Scholar 

  37. Mugabe C, Liggins RT, Guan D, Manisali I, Chafeeva I, Brooks DE, et al. Development and in vitro characterization of paclitaxel and docetaxel loaded into hydrophobically derivatized hyperbranched polyglycerols. Int J Pharm. 2011;404(1–2):238–49.

    Article  CAS  Google Scholar 

  38. Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Physicochemical properties of amorphous salt of cimetidine and diflunisal system. Int J Pharm. 2002;241(2):213–21.

    Article  CAS  Google Scholar 

  39. Zhang T, Chen J, Zhang Y, Shen Q, Pan W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur J Pharm Sci. 2011;43(3):174–9.

    Article  CAS  Google Scholar 

  40. Benita S, Levy MY. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci. 1993;82(11):1069–79.

    Article  CAS  Google Scholar 

  41. Samstein RM, Perica K, Balderrama F, Look M, Fahmy TM. The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials. 2008;29(6):703–8.

    Article  CAS  Google Scholar 

  42. Lewis DF, Lake BG, Dickins M. Quantitative structure-activity relationships (QSars) in CYP3A4 inhibitors: the importance of lipophilic character and hydrogen bonding. J Enzyme Inhib Med Chem. 2006;21(2):127–32.

    Article  CAS  Google Scholar 

  43. Liu Y, Chen D, Li J, Xia D, Yu M, Tao J, et al. NPC1L1-targeted cholesterol-grafted poly(beta-amino ester)/pDNA complexes for oral gene delivery. 2019;8(8):e1800934.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Shen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Fang, T., Yang, Y. et al. Preparation of Deoxycholate-Modified Docetaxel-Cimetidine Complex Chitosan Nanoparticles to Improve Oral Bioavailability. AAPS PharmSciTech 20, 302 (2019). https://doi.org/10.1208/s12249-019-1520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1520-y

KEY WORDS

Navigation