Skip to main content

Advertisement

Log in

Anti-solvent Precipitation Method Coupled Electrospinning Process to Produce Poorly Water-Soluble Drug-Loaded Orodispersible Films

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Orodispersible films (ODFs) are more convenient for paediatric and geriatric patients to take as compared to conventional tablets and capsules. Electrospinning has recently been attempted to produce ODFs. This study investigated the feasibility of formulating poorly water-soluble drug into ODFs using electrospinning technology coupled with the anti-solvent precipitation method. Piroxicam (PX), a poorly water-soluble drug, was chosen as a model drug. Polyvinyl alcohol and polyvinylpyrrolidone were used as film forming polymers. PX microcrystals were prepared using poloxamer as the stabilizer with the anti-solvent precipitation method, and then loaded in ODFs through the electrospinning process. The obtained ODFs were characterized using a scanning electron microscope, X-ray powder diffraction and Fourier transform infrared spectroscopy with respect to the morphology, solid state and potential molecular interaction between the model drug and polymers. The mechanical property, disintegration and dissolution rate of the obtained ODF were evaluated using dynamic mechanical analysis, a customized method and USP2 apparatus. The results showed that PX microcrystals suspended in polymeric solutions could be readily electrospun into fibrous films, where the microcrystals scattered between the fibers. The electrospun fibrous film-based ODFs exhibited satisfactory mechanical behaviour, and fast disintegration upon the polymer selection. In the dissolution tests, almost 90% of PX was dissolved within 6 min from the ODFs, whereas 40% of PX dissolved from physical mixtures in 60 min. This study demonstrated that poorly water-soluble drugs could be formulated into ODFs with satisfactory quality attributes by combining micronization and the electrospinning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhosle M, Benner JS, Dekoven M, Shelton J. Difficult to swallow: patient preferences for alternative valproate pharmaceutical formulations. Patient Prefer Adherence. 2009;3:161–71.

    Article  Google Scholar 

  2. Borges AF, Silva C, Coelho JF, Simoes S. Oral films: current status and future perspectives: I—galenical development and quality attributes. J Control Release. 2015;206:1–19. https://doi.org/10.1016/j.jconrel.2015.03.006.

    Article  CAS  PubMed  Google Scholar 

  3. Hirani JJ, Rathod DA, Vadalia KR. Orally disintegrating tablets: a review. Trop J Pharm Res. 2009;8(2). https://doi.org/10.4314/tjpr.v8i2.44525.

  4. Douroumis D. Orally disintegrating dosage forms and taste-masking technologies; 2010. Expert Opin Drug Deliv. 2011;8(5):665–75. https://doi.org/10.1517/17425247.2011.566553.

    Article  CAS  PubMed  Google Scholar 

  5. Venkatesh GM. Ondansetron orally disintegrating tablet compositions for prevention of nausea and vomiting. Google Patents. 2011.

  6. Pilgaonkar P, Rustomjee M, Gandhi A, Bagde PM. Orally disintegrating tablets. Google Patents. 2013.

  7. Elnaggar YS, El-Massik MA, Abdallah OY, Ebian AE. Maltodextrin: a novel excipient used in sugar-based orally disintegrating tablets and phase transition process. AAPS PharmSciTech. 2010;11(2):645–51. https://doi.org/10.1208/s12249-010-9423-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arya A, Chandra A, Sharma V, Pathak K. Fast dissolving oral films: an innovative drug delivery system and dosage form. Int J Chem Tech Res. 2010;2(1):576–83.

    CAS  Google Scholar 

  9. Repka MA, Gutta K, Prodduturi S, Munjal M, Stodghill SP. Characterization of cellulosic hot-melt extruded films containing lidocaine. Eur J Pharm Biopharm. 2005;59(1):189–96. https://doi.org/10.1016/j.ejpb.2004.06.008.

    Article  CAS  PubMed  Google Scholar 

  10. Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: a modern expansion in drug delivery system. Saudi Pharm J. 2016;24(5):537–46. https://doi.org/10.1016/j.jsps.2015.02.024.

    Article  PubMed  Google Scholar 

  11. Vuddanda PR, Mathew AP, Velaga S. Electrospun nanofiber mats for ultrafast release of ondansetron. React Funct Polym. 2016;99:65–72. https://doi.org/10.1016/j.reactfunctpolym.2015.12.009.

    Article  CAS  Google Scholar 

  12. Krstic M, Radojevic M, Stojanovic D, Radojevic V, Uskokovic P, Ibric S. Formulation and characterization of nanofibers and films with carvedilol prepared by electrospinning and solution casting method. Eur J Pharm Sci. 2017;101:160–6. https://doi.org/10.1016/j.ejps.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  13. Yu DG, Yang JM, Branford-White C, Lu P, Zhang L, Zhu LM. Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm. 2010;400(1–2):158–64. https://doi.org/10.1016/j.ijpharm.2010.08.010.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Q, Yu DG, Zhang LL, Liu XK, Deng YC, Zhao M. Electrospun hypromellose-based hydrophilic composites for rapid dissolution of poorly water-soluble drug. Carbohydr Polym. 2017;174:617–25. https://doi.org/10.1016/j.carbpol.2017.06.075.

    Article  CAS  PubMed  Google Scholar 

  15. Sakellariou P, Rowe R. Interactions in cellulose derivative films for oral drug delivery. Prog Polym Sci. 1995;20(5):889–942.

    Article  CAS  Google Scholar 

  16. Mahesh A, Shastri N, Sadanandam M. Development of taste masked fast disintegrating films of levocetirizine dihydrochloride for oral use. Curr Drug Deliv. 2010;7(1):21–7.

    Article  CAS  Google Scholar 

  17. Cilurzo F, Cupone IE, Minghetti P, Selmin F, Montanari L. Fast dissolving films made of maltodextrins. Eur J Pharm Biopharm. 2008;70(3):895–900. https://doi.org/10.1016/j.ejpb.2008.06.032.

    Article  CAS  PubMed  Google Scholar 

  18. Kunte S, Tandale P. Fast dissolving strips: a novel approach for the delivery of verapamil. J Pharm Bioallied Sci. 2010;2(4):325–8. https://doi.org/10.4103/0975-7406.72133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Setouhy DA, Abd El-Malak NS. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech. 2010;11(3):1018–25. https://doi.org/10.1208/s12249-010-9464-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tayel SA, El Nabarawi MA, Amin MM, Abou Ghaly MH. Sumatriptan succinate sublingual fast dissolving thin films: formulation and in vitro/in vivo evaluation. Pharm Dev Technol. 2016;21(3):328–37. https://doi.org/10.3109/10837450.2014.1003655.

    Article  CAS  PubMed  Google Scholar 

  21. Sagban TH, Ismail KY. Formulation and evaluation of orodispersible film of sildenafil citrate. Int J Pharm Pharm Sci. 2014;6(2):81–6.

    Google Scholar 

  22. Shimoda H, Taniguchi K, Nishimura M, Matsuura K, Tsukioka T, Yamashita H, et al. Preparation of a fast dissolving oral thin film containing dexamethasone: a possible application to antiemesis during cancer chemotherapy. Eur J Pharm Biopharm. 2009;73(3):361–5. https://doi.org/10.1016/j.ejpb.2009.08.010.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar GP, Phani AR, Prasad RG, Sanganal JS, Manali N, Gupta R, et al. Polyvinylpyrrolidone oral films of enrofloxacin: film characterization and drug release. Int J Pharm. 2014;471(1–2):146–52. https://doi.org/10.1016/j.ijpharm.2014.05.033.

    Article  CAS  PubMed  Google Scholar 

  24. Dinge A, Nagarsenker M. Formulation and evaluation of fast dissolving films for delivery of triclosan to the oral cavity. AAPS PharmSciTech. 2008;9(2):349–56. https://doi.org/10.1208/s12249-008-9047-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Kanjwal MA, Lin L, Chronakis IS. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B: Biointerfaces. 2013;103:182–8. https://doi.org/10.1016/j.colsurfb.2012.10.016.

    Article  CAS  PubMed  Google Scholar 

  26. Illangakoon UE, Gill H, Shearman GC, Parhizkar M, Mahalingam S, Chatterton NP, et al. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm. 2014;477(1–2):369–79. https://doi.org/10.1016/j.ijpharm.2014.10.036.

    Article  CAS  PubMed  Google Scholar 

  27. Tomar A, Sharma K, Chauhan NS, Mittal A, Bajaj U. Formulation and evaluation of fast dissolving oral film of dicyclomine as potential route of buccal delivery. Int J Drug Dev Res. 2012;4(2):408–17.

    CAS  Google Scholar 

  28. Susarla R, Sievens-Figueroa L, Bhakay A, Shen Y, Jerez-Rozo JI, Engen W, et al. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection. Int J Pharm. 2013;455(1–2):93–103. https://doi.org/10.1016/j.ijpharm.2013.07.051.

    Article  CAS  PubMed  Google Scholar 

  29. Shen BD, Shen CY, Yuan XD, Bai JX, Lv QY, Xu H, et al. Development and characterization of an orodispersible film containing drug nanoparticles. Eur J Pharm Biopharm. 2013;85(3 Pt B):1348–56. https://doi.org/10.1016/j.ejpb.2013.09.019.

    Article  CAS  PubMed  Google Scholar 

  30. Sievens-Figueroa L, Bhakay A, Jerez-Rozo JI, Pandya N, Romanach RJ, Michniak-Kohn B, et al. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS class II drug nanoparticles for pharmaceutical applications. Int J Pharm. 2012;423(2):496–508. https://doi.org/10.1016/j.ijpharm.2011.12.001.

    Article  CAS  PubMed  Google Scholar 

  31. Hinton C, Pratt C, De Vadetzsky E, Landwill K, McCloskey K, Schuemann H. Twenty years of confectionery and chocolate progress. In: Twenty years of confectionery chocolate progress, vol. 111; 1970.

    Google Scholar 

  32. Won DH, Kim MS, Lee S, Park JS, Hwang SJ. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int J Pharm. 2005;301(1–2):199–208. https://doi.org/10.1016/j.ijpharm.2005.05.017.

    Article  CAS  PubMed  Google Scholar 

  33. Zimmermann A, Millqvist-Fureby A, Elema MR, Hansen T, Mullertz A, Hovgaard L. Adsorption of pharmaceutical excipients onto microcrystals of siramesine hydrochloride: effects on physicochemical properties. Eur J Pharm Biopharm. 2009;71(1):109–16. https://doi.org/10.1016/j.ejpb.2008.06.014.

    Article  CAS  PubMed  Google Scholar 

  34. Cho E, Cho W, Cha KH, Park J, Kim MS, Kim JS, et al. Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives. Int J Pharm. 2010;396(1–2):91–8. https://doi.org/10.1016/j.ijpharm.2010.06.016.

    Article  CAS  PubMed  Google Scholar 

  35. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43(16):4403–12.

    Article  CAS  Google Scholar 

  36. Liu X, Nielsen LH, Klodzinska SN, Nielsen HM, Qu H, Christensen LP, et al. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm. 2018;123:42–9. https://doi.org/10.1016/j.ejpb.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, Aho J, Baldursdottir S, Bohr A, Qu H, Christensen LP, et al. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats. Int J Pharm. 2017;529(1–2):371–80. https://doi.org/10.1016/j.ijpharm.2017.06.086.

    Article  CAS  PubMed  Google Scholar 

  38. Upadhyay PP, Bond AD. Crystallization and disorder of the polytypic α1 and α2 polymorphs of piroxicam. CrystEngComm. 2015;17(28):5266–72.

    Article  CAS  Google Scholar 

  39. Lai F, Pini E, Corrias F, Perricci J, Manconi M, Fadda AM, et al. Formulation strategy and evaluation of nanocrystal piroxicam orally disintegrating tablets manufacturing by freeze-drying. Int J Pharm. 2014;467(1–2):27–33. https://doi.org/10.1016/j.ijpharm.2014.03.047.

    Article  CAS  PubMed  Google Scholar 

  40. Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai GA. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B. 2006;110(46):23052–9. https://doi.org/10.1021/jp063338+.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang WX, Wang YZ, Sun CF. Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res. 2007;14(6):467–74. https://doi.org/10.1007/s10965-007-9130-x.

    Article  CAS  Google Scholar 

  42. Oksanen CA, Zografi G. Molecular mobility in mixtures of absorbed water and solid poly(vinylpyrrolidone). Pharm Res. 1993;10(6):791–9.

    Article  CAS  Google Scholar 

  43. Koland M, Sandeep V, Charyulu N. Fast dissolving sublingual films of ondansetron hydrochloride: effect of additives on in vitro drug release and mucosal permeation. J Young Pharm: JYP. 2010;2(3):216–22.

    Article  CAS  Google Scholar 

  44. Samprasit W, Akkaramongkolporn P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P. Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam. Int J Pharm. 2015;487(1–2):213–22. https://doi.org/10.1016/j.ijpharm.2015.04.044.

    Article  CAS  PubMed  Google Scholar 

  45. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.

    Article  Google Scholar 

  46. Vrecer F, Vrbinc M, Meden A. Characterization of piroxicam crystal modifications. Int J Pharm. 2003;256(1–2):3–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshi Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Guo, X., Sun, Y. et al. Anti-solvent Precipitation Method Coupled Electrospinning Process to Produce Poorly Water-Soluble Drug-Loaded Orodispersible Films. AAPS PharmSciTech 20, 273 (2019). https://doi.org/10.1208/s12249-019-1464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1464-2

KEY WORDS

Navigation