Skip to main content
Log in

Eco-Friendly Tadalafil Surfactant-Free Dry Emulsion Tablets (SFDETs) Stabilized by In Situ Self-Assembled Aggregates of Natural Oil and Native Cyclodextrins

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The main principles of green chemistry and engineering were extended to pharmaceutical formulations to prepare eco-friendly surfactant-free dry emulsion tablets (SFDETs) devoid of solvents or synthetic surfactants. Surfactant-free emulsions were stabilized by in situ cyclodextrins/sweet almond oil inclusion complexes and assessed for creaming stability. Formulation variables’ effects on the emulsion droplet size and tadalafil solubility were studied using 22 × 3 factorial design. The emulsions exhibited nanometric and micrometric droplet sizes. The optimized nanoemulsion was loaded with tadalafil, morphologically evaluated, and utilized for preparing lyophilized SFDETs using different gelatin/Pearlitol® ratios. The tablets were characterized and the selected formulation was subjected to storage for 6 months. The emulsions prepared using β-cyclodextrin or higher concentrations of α-cyclodextrin showed little or no phase separation. Statistical analysis revealed significant influence of cyclodextrin type and amount on droplet size, while cyclodextrin type and oil volume exhibited significant effect on drug solubility. Morphological examination revealed non-aggregated spherical emulsion droplets. The prepared tablets showed satisfactory mechanical strength, short disintegration times, and enhanced drug dissolution. The selected tablet formulation (gelatin/Pearlitol®, 4:2 w/w) showed acceptable stability at 25°C/60% relative humidity. An overall conclusion claims that the absence of surfactants is expected to minimize the proposed tablets’ in vivo toxicity and environmental concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McClements DJ. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci. Elsevier; 2012 [cited 2018 Sep 27];17:235–45. Available from: https://www.sciencedirect.com/science/article/pii/S1359029412000702.

  2. Hashizaki K, Kageyama T, Inoue M, Taguchi H, Ueda H, Saito Y. Study on preparation and formation mechanism of n-alkanol/water emulsion using alpha-cyclodextrin. Chem Pharm Bull (Tokyo). 2007 [cited 2018 Oct 4];55:1620–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17978523.

  3. Scott MJ, Jones MN. The biodegradation of surfactants in the environment. Biochim Biophys Acta - Biomembr. Elsevier; 2000 [cited 2018 Oct 4];1508:235–51. Available from: https://www.sciencedirect.com/science/article/pii/S0304415700000137.

  4. Jiménez-González C, Poechlauer P, Broxterman QB, Yang BS, Am Ende D, Baird J, et al. Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers. Org Process Res Dev [Internet]. American Chemical Society; 2011 [cited 2018 Oct 4];15:900–11. Available from: http://pubs.acs.org/doi/abs/10.1021/op100327d.

    Article  Google Scholar 

  5. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. Elsevier; 2016 [cited 2018 Oct 10];11:404–16. Available from: https://www.sciencedirect.com/science/article/pii/S1818087615000896.

    Article  Google Scholar 

  6. Prieto C, Calvo L. Performance of the biocompatible surfactant Tween 80, for the formation of microemulsions suitable for new pharmaceutical processing. J Appl Chem. Hindawi; 2013 [cited 2018 Sep 27];2013:1–10. Available from: https://www.hindawi.com/archive/2013/930356/.

    Article  Google Scholar 

  7. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007 [cited 2018 Oct 4]. p. 1–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17137734.

    Article  CAS  Google Scholar 

  8. Sharma N, Baldi A. Exploring versatile applications of cyclodextrins: an overview. Drug Deliv. Taylor & Francis; 2014 [cited 2018 Oct 4];1–19. Available from: http://www.tandfonline.com/doi/full/10.3109/10717544.2014.938839.

  9. Kawano S, Kida T, Akashi M, Sato H, Shizuma M, Ono D. Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels. Beilstein J Org Chem. Beilstein-Institut; 2015 [cited 2018 Oct 16];11:2355–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26734085.

    Article  CAS  Google Scholar 

  10. Duchêne D, Bochot A, Yu S-C, Pépin C, Seiller M. Cyclodextrins and emulsions. Int J Pharm. 2003 [cited 2018 Sep 27];266:85–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14559397.

    Article  Google Scholar 

  11. Inoue M, Hashizaki K, Taguchi H, Saito Y. Formation and characterization of emulsions using beta-cyclodextrin as an emulsifier. Chem Pharm Bull (Tokyo). 2008 [cited 2018 Oct 4];56:668–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18451555.

  12. Li X, Li H, Xiao Q, Wang L, Wang M, Lu X, et al. Two-way effects of surfactants on Pickering emulsions stabilized by the self-assembled microcrystals of α-cyclodextrin and oil. Phys Chem Chem Phys. 2014 [cited 2018 Oct 16];16:14059–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24901107.

    Article  CAS  Google Scholar 

  13. Gupta S, Kesarla R, Omri A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. Hindawi Limited; 2013 [cited 2018 Oct 4];2013:848043. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24459591.

  14. MacGregor KJ, Embleton JK, Lacy JE, Perry EA, Solomon LJ, Seager H, et al. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv Drug Deliv Rev. Elsevier; 1997 [cited 2018 Oct 4];25:33–46. Available from: https://www.sciencedirect.com/science/article/pii/S0169409X96004899.

  15. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B. Elsevier; 2013 [cited 2018 Oct 4];3:361–72. Available from: https://www.sciencedirect.com/science/article/pii/S2211383513000919.

  16. Xiao L, Yi T, Liu Y, Zhou H. The in vitro lipolysis of lipid-based drug delivery systems: a newly identified relationship between drug release and liquid crystalline phase. Biomed Res Int. Hindawi; 2016 [cited 2018 Oct 4];2016:1–9. Available from: http://www.hindawi.com/journals/bmri/2016/2364317/.

    Google Scholar 

  17. Corveleyn S, Remon J. Formulation of a lyophilized dry emulsion tablet for the delivery of poorly soluble drugs. Int J Pharm. Elsevier; 1998 [cited 2018 Oct 4];166:65–74. Available from: https://www.sciencedirect.com/science/article/pii/S0378517398000246.

  18. Mahmoud EA, Bendas ER, Mohamed MI. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech. 2009 [cited 2018 Oct 4];10:183–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19238556.

    Article  CAS  Google Scholar 

  19. Gallarate M, Mittone E, Carlotti ME, Trotta M, Piccerelle P. Formulation of dry emulsion for topical applications. J Dispers Sci Technol [Internet]. Taylor & Francis Group ; 2009 [cited 2018 Oct 4];30:823–33. Available from: http://www.tandfonline.com/doi/abs/10.1080/01932690802643998

  20. Jang D-J, Jeong EJ, Lee H-M, Kim B-C, Lim S-J, Kim C-K. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur J Pharm Sci. 2006 [cited 2018 Oct 4];28:405–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16777390.

    Article  CAS  Google Scholar 

  21. Christensen KL, Pedersen GP, Kristensen HG. Preparation of redispersible dry emulsions by spray drying. Int J Pharm. 2001 [cited 2018 Sep 27];212:187–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11165076.

    Article  CAS  Google Scholar 

  22. Dollo G, Le Corre P, Guérin A, Chevanne F, Burgot JL, Leverge R. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. Eur J Pharm Sci. 2003 [cited 2018 Sep 27];19:273–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12885392.

    Article  CAS  Google Scholar 

  23. Hansen T, Holm P, Schultz K. Process characteristics and compaction of spray-dried emulsions containing a drug dissolved in lipid. Int J Pharm. Elsevier; 2004 [cited 2018 Oct 4];287:55–66. Available from: https://www.sciencedirect.com/science/article/pii/S0378517304005137.

    Article  CAS  Google Scholar 

  24. Hansen T, Holm P, Rohde M, Schultz K. In vivo evaluation of tablets and capsules containing spray-dried o/w-emulsions for oral delivery of poorly soluble drugs. Int J Pharm. 2005 [cited 2018 Oct 4];293:203–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15778058.

    Article  CAS  Google Scholar 

  25. Avérous L, Pollet E. Biodegradable polymers. Green Energy Technol. 2012 [cited 2018 Sep 27];50:13–39. Available from: http://link.springer.com/10.1007/978-1-4471-4108-2_2.

  26. Hussar DA. New drugs of 2003. J Am Pharm Assoc 2004 [cited 2018 Oct 4]. p. 168–210. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15098851.

  27. Porst H, Padma-Nathan H, Giuliano F, Anglin G, Varanese L, Rosen R. Efficacy of tadalafil for the treatment of erectile dysfunction at 24 and 36 hours after dosing: a randomized controlled trial. Urology. 2003 [cited 2018 Oct 4];62:121–5; discussion 125–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12837435.

    Article  Google Scholar 

  28. Doggrell SA. Comparison of clinical trials with sildenafil, vardenafil and tadalafil in erectile dysfunction. Expert Opin Pharmacother. 2005 [cited 2018 Oct 4];6:75–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15709885.

  29. Badr-Eldin SM, Elkheshen SA, Ghorab MM. Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: preparation and in-vitro evaluation. Eur J Pharm Biopharm. 2008;70:819–27.

    Article  CAS  Google Scholar 

  30. Leclercq L, Nardello-Rataj V. Pickering emulsions based on cyclodextrins: a smart solution for antifungal azole derivatives topical delivery. Eur J Pharm Sci. Elsevier; 2016 [cited 2018 Oct 18];82:126–37. Available from: https://www.sciencedirect.com/science/article/pii/S0928098715300701?via%3Dihub.

    Article  CAS  Google Scholar 

  31. Hu JW, Yen MW, Wang AJ, Chu IM. Effect of oil structure on cyclodextrin-based Pickering emulsions for bupivacaine topical application. Colloids Surfaces B Biointerfaces. Elsevier; 2018 [cited 2018 Oct 18];161:51–8. Available from: https://www.sciencedirect.com/science/article/pii/S0927776517306410?via%3Dihub.

  32. Pandya VM, Patel JK, Patel DJ. Formulation and optimization of nanosuspensions for enhancing. Dissolut Technol. 2011 [cited 2018 Oct 4];40–5. Available from: http://www.dissolutiontech.com/DTresour/201108Articles/DT201108_A04.pdf.

  33. US Pharmacopeia 35. [1216] Tablet friability. 2011.

  34. US Pharmacopeia 35. [701] Disintegration. 2011.

  35. US Pharmacopeia 35. [711] Dissolution. 2011.

  36. Shimada K, Ohe Y, Ohguni T, Kawano K, Ishii J, Nakamura T. Emulsifying properties of alpha-, beta- and gamma-cyclodextrins. Nippon Shokuhin Kogyo Gakkaishi. 1991 [cited 2018 Oct 16];38:16–20. Available from: https://eurekamag.com/research/007/298/007298155.php.

    Article  CAS  Google Scholar 

  37. Mathapa BG, Paunov VN. Cyclodextrin stabilised emulsions and cyclodextrinosomes. Phys Chem Chem Phys. 2013 [cited 2018 Oct 4];15:17903. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24043288.

    Article  CAS  Google Scholar 

  38. Araújo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm. 2010 [cited 2018 Sep 26];393:167–75. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378517310002085.

    Article  Google Scholar 

  39. Lo C-F, Yu C-Y, Kuan I-C, Lee S-L. Optimization of lipase production by Burkholderia sp. using response surface methodology. Int J Mol Sci. Multidisciplinary Digital Publishing Institute (MDPI); 2012 [cited 2018 Oct 11];13:14889–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23203100.

    Article  CAS  Google Scholar 

  40. Jaiswal P, Aggarwal G, Harikumar SL, Singh K. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan. Int J Pharm Investig. Wolters Kluwer—Medknow Publications; 2014 [cited 2018 Oct 11];4:195–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25426441.

  41. Yukuyama MN, Ghisleni DDM, Pinto TJA, Bou-Chacra NA. Nanoemulsion: process selection and application in cosmetics—a review. Int J Cosmet Sci. 2016 [cited 2018 Nov 4];38:13–24. Available from: http://doi.wiley.com/10.1111/ics.12260.

    Article  Google Scholar 

  42. Izquierdo P, Esquena J, Tadros TF, Dederen C, Garcia MJ, Azemar N, et al. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir [Internet]. American Chemical Society; 2002 [cited 2018 Nov 4];18:26–30. Available from: https://pubs.acs.org/doi/abs/10.1021/la010808c.

  43. Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005 [cited 2018 Oct 4];2:335–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16296758.

    Article  CAS  Google Scholar 

  44. de Araujo MVG, Macedo OFL, Nascimento C da C, Conegero LS, Barreto LS, Almeida LE, et al. Characterization, phase solubility and molecular modeling of α-cyclodextrin/pyrimethamine inclusion complex. Spectrochim Acta Part A Mol Biomol Spectrosc. Elsevier; 2009 [cited 2018 Oct 18];72:165–70. Available from: https://www.sciencedirect.com/science/article/pii/S1386142508004873?via%3Dihub.

  45. Monazzami A, Vahabzadeh F, Aroujalian A. Study on formation of oil-in-water (O/W) Pickering type emulsion via complexation between diesel and β-cyclodextrin. Chem Eng Trans. 2016 [cited 2018 Oct 18]. Available from: www.aidic.it/cet.

  46. de Araujo MVG, Macedo OFL, Nascimento C d C, Conegero LS, Barreto LS, Almeida LE, et al. Characterization, phase solubility and molecular modeling of α-cyclodextrin/pyrimethamine inclusion complex. Spectrochim Acta A Mol Biomol Spectrosc; Elsevier. 2009;72:165–70.

    Article  Google Scholar 

  47. Sakeena MHF, Elrashid SM, Munavvar AS, Azmin MN. Effects of oil and drug concentrations on droplets size of palm oil esters (POEs) nanoemulsion. J Oleo Sci. 2011 [cited 2018 Oct 4];60:155–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21427510.

    Article  CAS  Google Scholar 

  48. Daood GS, Basri H, Stanslas J, Fard Masoumi HR, Basri M. Predicting the optimum compositions of a parenteral nanoemulsion system loaded with azithromycin antibiotic utilizing the artificial neural network model. RSC Adv. The Royal Society of Chemistry; 2015 [cited 2018 Oct 4];5:82654–65. Available from: http://xlink.rsc.org/?DOI=C5RA14913D.

    Article  CAS  Google Scholar 

  49. Shoukri RA, Ahmed IS, Shamma RN. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur J Pharm Biopharm. Elsevier; 2009 [cited 2018 Oct 11];73:162–71. Available from: https://www.sciencedirect.com/science/article/pii/S0939641109001374.

  50. Omar SM, Abd Alla FI, Abdelgawad NM. Preparation and optimization of fast-disintegrating tablet containing naratriptan hydrochloride using D-optimal mixture design. AAPS PharmSciTech [Internet]. Springer International Publishing; 2018 [cited 2018 Oct 11];19:2472–87. Available from: http://link.springer.com/10.1208/s12249-018-1061-9.

  51. Dave V, Yadav RB, Ahuja R, Yadav S. Formulation design and optimization of novel fast dissolving tablet of chlorpheniramine maleate by using lyophilization techniques. Bull Fac Pharmacy, Cairo Univ. Elsevier; 2017 [cited 2018 Oct 11];55:31–9. Available from: https://www.sciencedirect.com/science/article/pii/S1110093116300515.

  52. Jones RJ, Rajabi-Siahboomi A, Levina M, Perrie Y, Mohammed AR. The influence of formulation and manufacturing process parameters on the characteristics of lyophilized orally disintegrating tablets. Pharmaceutics [Internet]. Multidisciplinary Digital Publishing Institute (MDPI); 2011 [cited 2018 Oct 11];3:440–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24310589.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaimaa M. Badr-Eldin.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest associated with this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badr-Eldin, S.M., Labib, G.S. & Aburahma, M.H. Eco-Friendly Tadalafil Surfactant-Free Dry Emulsion Tablets (SFDETs) Stabilized by In Situ Self-Assembled Aggregates of Natural Oil and Native Cyclodextrins. AAPS PharmSciTech 20, 255 (2019). https://doi.org/10.1208/s12249-019-1450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1450-8

KEY WORDS

Navigation