Skip to main content
Log in

A Drug Release Model Constructed by Factorial Design to Investigate the Interaction Between Host Mesoporous Silica Carriers and Drug Molecules

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A drug release model based on mesocellular foam silica (MCF) for Biopharmaceutics Classification System (BCS) II drugs was conducted. A three-level two-factorial factorial design was carried out for the exploration of the influence of the pore size of MCF (X1) and drug-loading degree (X2) for drug release behaviors. Cumulative release in 1 h (Y1), cumulative release in 24 h (Y2), and rate constant k (Y3) were selected as dependent response variables. A series of MCFs (7MCF, 12MCF, and 17MCF) with arithmetic increased pore diameters was synthesized as drug carriers. The morphologies and structures of MCFs and pore size distributions were detected by scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption analysis. With celecoxib as a model drug, nine drug-loaded samples were prepared and further characterized by differential scanning calorimetry and X-ray diffraction analyses. The release behavior was examined by in vitro dissolution. Factorial design results demonstrated that cumulative release in 1 h and the rate constant k were mainly affected by X2, while cumulative release in 24 h was influenced by both X1 and X2. Furthermore, quadratic equations of Y1, Y2, and Y3 were conducted, respectively. This work was expected to provide some scientific references for designing specific drug delivery models with mesoporous silica carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release. 2010;145(3):257–63. https://doi.org/10.1016/j.jconrel.2010.04.029.

    Article  CAS  PubMed  Google Scholar 

  2. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75. https://doi.org/10.1016/j.drudis.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  3. Khanfar M, Al-Nimry S. Stabilization and amorphization of lovastatin using different types of silica. AAPS PharmSciTech. 2017;18(6):2358–67. https://doi.org/10.1208/s12249-017-0717-1.

    Article  CAS  PubMed  Google Scholar 

  4. Hu Y, Wang J, Zhi Z, Jiang T, Wang S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci. 2011;363(1):410–7. https://doi.org/10.1016/j.jcis.2011.07.022.

    Article  CAS  PubMed  Google Scholar 

  5. Torney F, Trewyn BG, Lin VS, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol. 2007;2(5):295–300. https://doi.org/10.1038/nnano.2007.108.

    Article  CAS  PubMed  Google Scholar 

  6. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88. https://doi.org/10.1016/j.addr.2008.03.012.

    Article  CAS  PubMed  Google Scholar 

  7. Manzano M, Colilla M, Vallet-Regi M. Drug delivery from ordered mesoporous matrices. Expert Opin Drug Deliv. 2009;6(12):1383–400. https://doi.org/10.1517/17425240903304024.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Zhang J, Quan G, Yang P, Pan X, Wu C. The serum-resistant transfection evaluation and long-term stability of gene delivery dry powder based on mesoporous silica nanoparticles and polyethyleneimine by freezing-drying. AAPS PharmSciTech. 2017;18(5):1536–43. https://doi.org/10.1208/s12249-016-0617-9.

    Article  CAS  PubMed  Google Scholar 

  9. Ganesh M, Ubaidulla U, Hemalatha P, Peng MM, Jang HT. Development of duloxetine hydrochloride loaded mesoporous silica nanoparticles: characterizations and in vitro evaluation. AAPS PharmSciTech. 2015;16(4):944–51. https://doi.org/10.1208/s12249-014-0273-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Rosenholm JM. The viability of mesoporous silica nanoparticles for drug delivery. Ther Deliv. 2015;6(8):891–3. https://doi.org/10.4155/tde.15.46.

    Article  CAS  PubMed  Google Scholar 

  11. Lou X, Schumacher T, Yang H, Ding A. Synthesis and characterisation of silica-polymer hybrid core-shell and hollow spheres for drug delivery applications. J Control Release. 2011;152(Suppl 1):e65–7. https://doi.org/10.1016/j.jconrel.2011.08.126.

    Article  CAS  PubMed  Google Scholar 

  12. Sun L, Wang Y, Jiang T, Zheng X, Zhang J, Sun J, et al. Novel chitosan-functionalized spherical nanosilica matrix as an oral sustained drug delivery system for poorly water-soluble drug carvedilol. ACS Appl Mater Interfaces. 2013;5(1):103–13. https://doi.org/10.1021/am302246s.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Zhang J, Jiang T, Wang S. Inclusion of the poorly water-soluble drug simvastatin in mesocellular foam nanoparticles: drug loading and release properties. Int J Pharm. 2011;410(1–2):118–24. https://doi.org/10.1016/j.ijpharm.2010.07.040.

    Article  CAS  PubMed  Google Scholar 

  14. Tang J, Bian Z, Hu J, Xu S, Liu H. The effect of a P123 template in mesopores of mesocellular foam on the controlled-release of venlafaxine. Int J Pharm. 2012;424(1–2):89–97. https://doi.org/10.1016/j.ijpharm.2011.12.048.

    Article  CAS  PubMed  Google Scholar 

  15. Sayed E, Haj-Ahmad R, Ruparelia K, Arshad MS, Chang MW, Ahmad Z. Porous inorganic drug delivery systems—a review. AAPS PharmSciTech. 2017;18(5):1507–25. https://doi.org/10.1208/s12249-017-0740-2.

    Article  CAS  PubMed  Google Scholar 

  16. Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124–33. https://doi.org/10.4103/2230-973X.160844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jadhav NV, Vavia PR. Dodecylamine template-based hexagonal mesoporous silica (HMS) as a carrier for improved oral delivery of fenofibrate. AAPS PharmSciTech. 2017;18(7):2764–73. https://doi.org/10.1208/s12249-017-0761-x.

    Article  CAS  PubMed  Google Scholar 

  18. Czarnobaj K, Prokopowicz M, Sawicki W. Formulation and in vitro characterization of bioactive mesoporous silica with doxorubicin and metronidazole intended for bone treatment and regeneration. AAPS PharmSciTech. 2017;18(8):3163–71. https://doi.org/10.1208/s12249-017-0804-3.

    Article  CAS  PubMed  Google Scholar 

  19. Xu WJ, Riikonen J, Lehto VP. Mesoporous systems for poorly soluble drugs. Int J Pharm. 2013;453(1):181–97. https://doi.org/10.1016/j.ijpharm.2012.09.008.

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Xu L, Zheng N, Wang H, Lu F, Li S. Biomimetic synthesized bimodal nanoporous silica: bimodal mesostructure formation and application for ibuprofen delivery. Mater Sci Eng C Mater Biol Appl. 2016;58:1105–11. https://doi.org/10.1016/j.msec.2015.09.091.

    Article  CAS  PubMed  Google Scholar 

  21. Ganesh M, Lee SG. Synthesis, characterization and drug release capability of new cost effective mesoporous silica nano particle for ibuprofen drug delivery. Int J Control Autom. 2013;6(5):207–16.

    Article  Google Scholar 

  22. Popovici RF, Seftel EM, Mihai GD, Popovici E, Voicu VA. Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug. J Pharm Sci. 2011;100(2):704–14. https://doi.org/10.1002/jps.22308.

    Article  CAS  PubMed  Google Scholar 

  23. Giret S, Wong Chi Man M, Carcel C. Mesoporous-silica-functionalized nanoparticles for drug delivery. Chemistry. 2015;21(40):13850–65. https://doi.org/10.1002/chem.201500578.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–27. https://doi.org/10.1016/j.nano.2014.09.014.

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt-Winkel P, Lukens WW, Zhao D, Yang P, Chmelka BF, Stucky GD. Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc. 1999;121(1):254–5. https://doi.org/10.1021/ja983218i.

    Article  CAS  Google Scholar 

  26. Lettow JS, Han YJ, Schmidt-Winkel P, Yang PD, Zhao DY, Stucky GD, et al. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir. 2000;16(22):8291–5. https://doi.org/10.1021/la000660h.

    Article  CAS  Google Scholar 

  27. Zhu W, Wan L, Zhang C, Gao Y, Zheng X, Jiang T, et al. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate. Mater Sci Eng C Mater Biol Appl. 2014;34:78–85. https://doi.org/10.1016/j.msec.2013.08.014.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science (New York, NY). 1998;279(5350):548–52.

    Article  CAS  Google Scholar 

  29. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, et al. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J Am Chem Soc. 1992;114(27):10834–43. https://doi.org/10.1021/ja00053a020.

    Article  CAS  Google Scholar 

  30. Roggers R, Kanvinde S, Boonsith S, Oupicky D. The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. AAPS PharmSciTech. 2014;15(5):1163–71. https://doi.org/10.1208/s12249-014-0142-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carriazo D, del Arco M, Fernandez A, Martin C, Rives V. Inclusion and release of fenbufen in mesoporous silica. J Pharm Sci. 2010;99(8):3372–80. https://doi.org/10.1002/jps.22096.

    Article  CAS  PubMed  Google Scholar 

  32. Riikonen J, Correia A, Kovalainen M, Nakki S, Lehtonen M, Leppanen J, et al. Systematic in vitro and in vivo study on porous silicon to improve the oral bioavailability of celecoxib. Biomaterials. 2015;52:44–55. https://doi.org/10.1016/j.biomaterials.2015.02.014.

    Article  CAS  PubMed  Google Scholar 

  33. Khosravi M, Arabi S. Application of response surface methodology (RSM) for the removal of methylene blue dye from water by nano zero-valent iron (NZVI). Water Sci Technol. 2016;74(2):343–52. https://doi.org/10.2166/wst.2016.122.

    Article  CAS  PubMed  Google Scholar 

  34. Rahmanian B, Pakizeh M, Mansoori SA, Abedini R. Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process. J Hazard Mater. 2011;187(1–3):67–74. https://doi.org/10.1016/j.jhazmat.2010.11.135.

    Article  CAS  PubMed  Google Scholar 

  35. Mousavi SJ, Parvini M, Ghorbani M. Experimental design data for the zinc ions adsorption based on mesoporous modified chitosan using central composite design method. Carbohydr Polym. 2018;188:197–212. https://doi.org/10.1016/j.carbpol.2018.01.105.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar L, Sreenivasa Reddy M, Managuli RS, Pai KG. Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharm J. 2015;23(5):549–55. https://doi.org/10.1016/j.jsps.2015.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aziz B, Zhao G, Hedin N. Carbon dioxide sorbents with propylamine groups-silica functionalized with a fractional factorial design approach. Langmuir. 2011;27(7):3822–34. https://doi.org/10.1021/la104629m.

    Article  CAS  PubMed  Google Scholar 

  38. Mohtar N, AKK N, Darwis Y. Solid lipid nanoparticles of atovaquone based on 2(4) full-factorial design. Iran J Pharm Res: IJPR. 2015;14(4):989–1000.

    CAS  PubMed  Google Scholar 

  39. Panic S, Rakic D, Guzsvany V, Kiss E, Boskovic G, Konya Z, et al. Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design. Chemosphere. 2015;141:87–93. https://doi.org/10.1016/j.chemosphere.2015.06.042.

    Article  CAS  PubMed  Google Scholar 

  40. Soliman SM, Abdelmalak NS, El-Gazayerly ON, Abdelaziz N. Novel non-ionic surfactant proniosomes for transdermal delivery of lacidipine: optimization using 2(3) factorial design and in vivo evaluation in rabbits. Drug Deliv. 2016;23(5):1608–22. https://doi.org/10.3109/10717544.2015.1132797.

    Article  CAS  PubMed  Google Scholar 

  41. Laine AL, Price D, Davis J, Roberts D, Hudson R, Back K, et al. Enhanced oral delivery of celecoxib via the development of a supersaturable amorphous formulation utilising mesoporous silica and co-loaded HPMCAS. Int J Pharm. 2016;512(1):118–25. https://doi.org/10.1016/j.ijpharm.2016.08.034.

    Article  CAS  PubMed  Google Scholar 

  42. Amjadi M, Jalili R. A molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib. Spectrochim Acta A Mol Biomol Spectrosc. 2018;191:345–51. https://doi.org/10.1016/j.saa.2017.10.026.

    Article  CAS  PubMed  Google Scholar 

  43. Forsgren J, Andersson M, Nilsson P, Mihranyan A. Mesoporous calcium carbonate as a phase stabilizer of amorphous celecoxib--an approach to increase the bioavailability of poorly soluble pharmaceutical substances. Adv Healthc Mater. 2013;2(11):1469–76. https://doi.org/10.1002/adhm.201200391.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Jiang T, Zhang Q, Wang S. Inclusion of telmisartan in mesocellular foam nanoparticles: drug loading and release property. Eur J Pharm Biopharm. 2010;76(1):17–23. https://doi.org/10.1016/j.ejpb.2010.05.010.

    Article  CAS  PubMed  Google Scholar 

  45. Riikonen J, Xu W, Lehto VP. Mesoporous systems for poorly soluble drugs—recent trends. Int J Pharm. 2018;536(1):178–86. https://doi.org/10.1016/j.ijpharm.2017.11.054.

    Article  CAS  PubMed  Google Scholar 

  46. Chen S, Sun S, Zhang X, Han Q, Yang L, Ding M. Synthesis of large-pore mesostructured cellular foam silica spheres for the adsorption of biomolecules. J Sep Sci. 2014;37(17):2411–7. https://doi.org/10.1002/jssc.201400154.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Sun C, Hao Y, Jiang T, Zheng L, Wang S. Mechanism of dissolution enhancement and bioavailability of poorly water soluble celecoxib by preparing stable amorphous nanoparticles. J Pharm Pharm Sci. 2010;13(4):589–606.

    Article  CAS  Google Scholar 

  48. Hamilton BD, Ha J-M, Hillmyer MA, Ward MD. Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. Acc Chem Res. 2012;45(3):414–23. https://doi.org/10.1021/ar200147v.

    Article  CAS  PubMed  Google Scholar 

  49. Lu GW, Hawley M, Smith M, Geiger BM, Pfund W. Characterization of a novel polymorphic form of celecoxib. J Pharm Sci. 2006;95(2):305–17. https://doi.org/10.1002/jps.20522.

    Article  CAS  PubMed  Google Scholar 

  50. Hashemikia S, Hemmatinejad N, Ahmadi E, Montazer M. Antibacterial and anti-inflammatory drug delivery properties on cotton fabric using betamethasone-loaded mesoporous silica particles stabilized with chitosan and silicone softener. Drug Deliv. 2016;23(8):2946–55. https://doi.org/10.3109/10717544.2015.1132795.

    Article  CAS  PubMed  Google Scholar 

  51. Andersson J, Rosenholm J, Areva S, Linden M. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater. 2004;16(21):4160–7. https://doi.org/10.1021/cm0401490.

    Article  CAS  Google Scholar 

  52. Li J, Wang H, Li H, Xu L, Guo Y, Lu F, et al. Mutual interaction between guest drug molecules and host nanoporous silica xerogel studied using central composite design. Int J Pharm. 2016;498(1–2):32–9. https://doi.org/10.1016/j.ijpharm.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 81703427), Doctoral Research Funding of Liaoning Province (No. 20170520001), Science and Technology Research Project Funds from Liaoning Education Department of China (No.2014226033), Project Fund of China Medical University (No. XZR20160007), and Fund of the First Affiliated Hospital of China Medical University (FSFH201717).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyan Jiang or Long Wan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wang, K., Jiang, M. et al. A Drug Release Model Constructed by Factorial Design to Investigate the Interaction Between Host Mesoporous Silica Carriers and Drug Molecules. AAPS PharmSciTech 20, 126 (2019). https://doi.org/10.1208/s12249-019-1340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1340-0

KEY WORDS

Navigation