Skip to main content
Log in

Enhanced Solubility of Alkaloids by Complexation with Polycarboxylic Materials for Controlled Release Formulations: Case of Peschiera fuchsiaefolia

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Malaria is a major public health problem with hundreds of thousands of deaths yearly. Extracts of Peschiera fuchsiaefolia (Pf), an Apocynaceae family plant, are used as malaria treatment by several populations. Artemisinin is another effective largely used antimalarial agent but susceptible to generate resistant forms of Plasmodium. To reduce the risk of new resistant strains’ appearance, the WHO recommended artemisinin-based combination therapy (ACT) with another bioactive agent, ensuring a long duration of antiplasmodial activity. Pf alkaloids are good candidates for ACT, but their solubility is very low. This research was aimed to improve the solubility of Pf alkaloids by complexation via their amine groups with carboxylate groups of carboxymethylstarch (CMS), an excipient used to formulate oral dosage forms for controlled drug release. It was found that when complexed as CMS-Pf, the solubility of Pf is increased (four to five times in function of dissolution medium). A new specific and faster approach to evaluate the solubility was proposed, measuring the effective saturation concentration of the compound of interest via one of its specific capacities, i.e., absorption capacity at a specific wavelength or antioxidant properties. This approach is more convenient for solubility evaluation of various active agents from complexes or crude extracts, or in heterogeneous samples. Also, the storage stability was markedly improved from 1 week for Pf co-processed with maltodextrin (MD/Pf) to several months for CMS-Pf (in similar controlled temperature and humidity conditions). The co-processing as MD/Pf or complexation as CMS-Pf affected physical properties but not the biological (i.e., antioxidant) activity of Pf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Combined Chemical Dictionnary. Alkaloids. CRC Press: Taylor and Francis Group, 2017. Alkaloids. http://ccd.chemnetba se.com/faces/chemical/ChemicalSearch Results. xhtml. Accessed 2 Nov 2017.

  2. Murphy D. J. 2017. Alkaloids. In B. Thomas, B. G. Murray et D. J. Murphy, Encyclopedia of applied plant sciences (2nd Ed.) (p. 118-124). Oxford : Academic Press.

  3. Souto AL, Tavares JF, Da Silva MS, Diniz MdFFM, De Athayde-Filho PF, Barbosa Filho JM. Anti-inflammatory activity of alkaloids: an update from 2000 to 2010. Molecules 2011;16:8515–8534.

  4. Küpeli E, Koşar M, Yeşilada E, Başer KHC. A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species. Life Sci. 2002;72:645–57.

    PubMed  Google Scholar 

  5. Song Z, Ao M. Research progress of alkaloids in Uncaria. Med Plant. 2014;5:56–8.

    CAS  Google Scholar 

  6. Lau Y-S, Machha A, Achike FI, Murugan D, Mustafa MR. The aporphine alkaloid boldine improves endothelial function in spontaneously hypertensive rats. Exp Biol Med. 2012;237:93–8.

    CAS  Google Scholar 

  7. Roberts MF. Alkaloids: biochemistry, ecology, and medicinal applications: Springer Science & Business Media; 2013.

  8. Isah T. Anticancer alkaloids from trees: development into drugs. Pharmacogn Rev. 2016;10:90–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science. 2012;336:1704–8.

    CAS  PubMed  Google Scholar 

  10. Zhou L-N, Ge X-L, Dong T-T, Gao H-Y, Sun B-H. Antibacterial steroidal alkaloids from Holarrhena antidysenteriaca. Chin J Nat Med. 2017;15:540–5.

    PubMed  Google Scholar 

  11. Nair JJ, Wilhelm A, Bonnet SL, Van Staden J. Antibacterial constituents of the plant family Amaryllidaceae. Bioorg Med Chem Lett. 2017;27:4943–51.

    CAS  PubMed  Google Scholar 

  12. Frederich M, Tits M, Angenot L. Potential antimalarial activity of indole alkaloids. Trans R Soc Trop Med Hyg. 2008;102:11–9.

    CAS  PubMed  Google Scholar 

  13. Komlaga G, Genta-Jouve G, Cojean S, Dickson RA, Mensah MLK, Loiseau PM, et al. Antiplasmodial Securinega alkaloids from Phyllanthus fraternus: discovery of natural (+)-allonorsecurinine. Tetrahedron Lett. 2017;58:3754–6.

    CAS  Google Scholar 

  14. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. World Health Organization. World Malaria Report 2017. Geneva, Switzerland: World Health Organization, 2017; 196 p. Accessed April, 05th 2018: http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/.

  16. World Health Organization. Malaria-Areas of work: Overview of malaria treatment. World Health Organization, Geneva, Switzerland. Accessed April 05th, 2018: http://www.who.int/malaria/areas/treatment/overview/en/.

  17. Ancolio C, Azas N, Mahiou V, Ollivier E, Di Giorgio C, Keita A, et al. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother Res. 2002;16:646–9.

    CAS  PubMed  Google Scholar 

  18. Frédérich M, Tits M, Hayette M-P, Brandt V, Penelle J, DeMol P, et al. 10 ‘-Hydroxyusambarensine, a new antimalarial bisindole alkaloid from the roots of Strychnos usambarensis. J Nat Prod. 1999;62:619–21.

    PubMed  Google Scholar 

  19. Asrade S, Mengesha Y, Moges G, Gelayee DA. In vivo antiplasmodial activity evaluation of the leaves of Balanites rotundifolia (Van Tiegh.) Blatter (Balanitaceae) against Plasmodium berghei. J Exp Pharmacol. 2017;9:59.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Meschini S, Marra M, Calcabrini A, Federici E, Galeffi C, Arancia G. Voacamine, a bisindolic alkaloid from Peschiera fuchsiaefolia, enhances the cytotoxic effect of doxorubicin on multidrug-resistant tumor cells. Int J Oncol. 2003;23:1505–13.

    CAS  PubMed  Google Scholar 

  21. Zocoler MA, Oliveira AJBd, Sarragiotto MH, Grzesiuk VL, Vidotti GJ. Qualitative determination of indole alkaloids of Tabernaemontana fuchsiaefolia (Apocynaceae). J Braz Chem Soc. 2005;16:1372–7.

  22. Federici E, Palazzino G, Nicoletti M, Galeffi C. Antiplasmodial activity of the alkaloids of Peschiera fuchsiaefolia. Planta Med. 2000;66:93–5.

    CAS  PubMed  Google Scholar 

  23. Chowdhury SR, Kumar A, Godinho JLP, Silva STDM, Zuma AA, Saha S, et al. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochem Pharmacol. 2017;138:19–30.

    CAS  PubMed  Google Scholar 

  24. Chaudhary A, Nagaich U, Gulati N, Sharma VK, Khosa RL, Partapur MU. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review. J Adv Pharm Educ Res. 2012;2:32–67.

    Google Scholar 

  25. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;195727:10 pp.

  26. Shao D, Yang Z, Zhou G, Chen J, Zheng S, Lv X, et al. Improving the solubility of acipimox by cosolvents and the study of thermodynamic properties on solvation process. J Mol Liq. 2018;262:389–95.

    CAS  Google Scholar 

  27. Asghar SZ, Jouyban A, Martinez F, Rahimpour E. Solubility of naproxen in ternary mixtures of {ethanol + propylene glycol + water} at various temperatures: data correlation and thermodynamic analysis. J Mol Liq. 2018;268:517–22.

    CAS  Google Scholar 

  28. Dizaj SM. Preparation and study of vitamin A palmitate microemulsion drug delivery system and investigation of co-surfactant effect. J Nanostruct Chem. 2013;3:59.

    Google Scholar 

  29. Raval AJ, Patel MM. Preparation and characterization of nanoparticles for solubility and dissolution rate enhancement of meloxicam. Int Res J Pharm. 2011;1:42–9.

    CAS  Google Scholar 

  30. Jagdale SC, Jadhav VN, Chabukswar AR, Kuchekar BS. Solubility enhancement, physicochemical characterization and formulation of fast-dissolving tablet of nifedipine-betacyclodextrin complexes. Braz J Pharm Sci. 2012;48:131–45.

    CAS  Google Scholar 

  31. Sabzevari A, Adibkia K, Hashemi H, De Geest BG, Mohsenzadeh N, Atyabi F, et al. Improved anti-inflammatory effects in rabbit eye model using biodegradable poly beta-amino ester nanoparticles of triamcinolone acetonide. Invest Ophthalmol Vis Sci. 2013;54:5520–6.

    CAS  PubMed  Google Scholar 

  32. Das SK, Kahali N, Bose A, Khanam J. Physicochemical characterization and in vitro dissolution performance of ibuprofen-Captisol® (sulfobutylether sodium salt of β-CD) inclusion complexes. J Mol Liq. 2018;261:239–49.

    CAS  Google Scholar 

  33. Zhang L, Liu M, Lu C, Ren D, Fan G, Liu C, et al. The hydroxypropyl–β-cyclodextrin complexation of toltrazuril for enhancing bioavailability. Drug Des Devel Ther. 2018;12:583–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawakami K. Miscibility analysis of particulate solid dispersions prepared by electrospray deposition. Int J Pharm. 2012;433:71–8.

    CAS  PubMed  Google Scholar 

  35. Tabbakhian M, Hasanzadeh F, Tavakoli N, Jamshidian Z. Dissolution enhancement of glibenclamide by solid dispersion: solvent evaporation versus a supercritical fluid-based solvent -antisolvent technique. Res Pharm Sci. 2014;9:337–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuvaraja K, Das SK, Khanam J. Process optimization and characterization of carvedilol solid dispersion with hydroxypropyl-β-cyclodextrin and tartaric acid. Korean J Chem Eng. 2015;32:132–40.

    CAS  Google Scholar 

  37. Javadzadeh Y, Ahadi F, Davaran S, Mohammadi G, Sabzevari A, Adibkia K. Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf B: Biointerfaces. 2010;81:498–502.

    CAS  PubMed  Google Scholar 

  38. Mohammadi G, Nokhodchi A, Barzegar-Jalali M, Lotfipour F, Adibkia K, Ehyaei N, et al. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf B. 2011;88:39–44.

    CAS  Google Scholar 

  39. U.S. Food and Drug Administration. GRAS Notice 616: Acetylated high amylose corn starc. In: US FDA, editor. GRAS Notice 2016.

  40. Zhou M, Shi L, Cheng F, Lin Y, Zhu PX. High-efficient preparation of carboxymethyl starch via ball milling with limited solvent content. Starch-Stärke DOI. 2018;70:1700250.

  41. Haroon M, Wang L, Yu H, Ullah RS, Zain Ul A, Khan RU, et al. Synthesis of carboxymethyl starch-g-polyvinylpyrolidones and their properties for the adsorption of rhodamine 6G and ammonia. Carbohydr Polym. 2018;186:150–8.

    CAS  PubMed  Google Scholar 

  42. Assaad E, Mateescu MA. The influence of protonation ratio on properties of carboxymethyl starch excipient at various substitution degrees: structural insights and drug release kinetics. Int J Pharm. 2010;394:75–84.

    CAS  PubMed  Google Scholar 

  43. Le Tien C, Millette M, Mateescu MA, Lacroix M. Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnol Appl Biochem. 2004;39:347–54.

    Google Scholar 

  44. Stojanović Ž, Jeremić K, Jovanović S, Lechner MD. A comparison of some methods for the determination of the degree of substitution of carboxymethyl starch. Starch - Stärke. 2005;57:79–83.

    Google Scholar 

  45. Konan KV, Le Tien C, Mateescu MA. Electrolysis-induced fast activation of the ABTS reagent for an antioxidant capacity assay. Anal Methods. 2016;8:5638–44.

    CAS  Google Scholar 

  46. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7.

    CAS  PubMed  Google Scholar 

  47. Iveković D, Milardović S, Roboz M, Grabarić BS. Evaluation of the antioxidant activity by flow injection analysis method with electrochemically generated ABTS radical cation. Analyst. 2005;130:708–14.

    PubMed  Google Scholar 

  48. U.S Pharmacopoeia-National Formulary (USP 40 NF 35). Description and Relative solubility of USP and NF Articles. United States Pharmacopeial Convention, Inc; 2016; Rockville, Md, USA, 2017. p. 2453–2454.

  49. Cano-Chauca M, Stringheta PC, Ramos AM, Cal-Vidal J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov Food Sci Emerg Tech. 2005;6:420–8.

    CAS  Google Scholar 

  50. U.S Pharmacopoeia-National Formulary (USP 40 NF 35). Dissolution. United States Pharmacopeial Convention, Inc. 2016; Rockville, Md, USA, 2017. p. 588–610.

  51. Lemieux M, Gosselin P, Mateescu MA. Influence of drying procedure and of low degree of substitution on the structural and drug release properties of carboxymethyl starch. AAPS PharmSciTech. 2010;11:775–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Calinescu C, Mulhbacher J, Nadeau É, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch (CM-HAS) as excipient for Escherichia coli oral formulations. Eur J Pharm Biopharm. 2005;60:53–60.

    CAS  PubMed  Google Scholar 

  53. Calinescu C, Mateescu MA. Carboxymethyl high amylose starch: chitosan self-stabilized matrix for probiotic colon delivery. Eur J Pharm Biopharm. 2008;70:582–9.

    CAS  PubMed  Google Scholar 

  54. Herraiz T, Galisteo J. Endogenous and dietary indoles: a class of antioxidants and radical scavengers in the ABTS assay. Free Radic Res. 2004;38:323–31.

    CAS  PubMed  Google Scholar 

  55. Chaiyana W, Punyoyai C, Somwongin S, Leelapornpisid P, Ingkaninan K, Waranuch N, et al. Inhibition of 5α-reductase, IL-6 secretion, and oxidation process of Equisetum debile Roxb. ex vaucher extract as functional food and nutraceuticals ingredients. Nutrients. 2017;9:1105.

    PubMed Central  Google Scholar 

  56. Wang H, Guo X, Hu X, Li T, Fu X, Liu RH. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017;217:773–81.

    CAS  PubMed  Google Scholar 

  57. Ping G, Wang Y, Shen L, Wang Y, Hu X, Chen J, et al. Highly efficient complexation of sanguinarine alkaloid by carboxylatopillar[6]arene: pKa shift, increased solubility and enhanced antibacterial activity. Chem Commun. 2017;53:7381–4.

    CAS  Google Scholar 

  58. Majewska K, Skwierawska A, Kamińska B, Prześniak-Welenc M. Improvement of opipramol base solubility by complexation with β-cyclodextrin. Supramol Chem. 2018;30:20–31.

    CAS  Google Scholar 

  59. Gürten B, Yenigül E, Sezer AD, Malta S. Complexation and enhancement of temozolomide solubility with cyclodextrins. Braz J Pharm Sci. 2018;54:e17513.

    Google Scholar 

  60. Lu P-J, Hsu P-I, Chen C-H, Hsiao M, Chang W-C, Tseng H-H, et al. Gastric juice acidity in upper gastrointestinal diseases. World J Gastroenterol. 2010;16:5496–501.

    PubMed  PubMed Central  Google Scholar 

  61. Pratiwi M, Faridah DN, Lioe HN. Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): a review. Starch-Stärke. DOI:2018;70:1700028.

Download references

Acknowledgements

Support from NSERC (Natural Sciences and Engineering Research Council) of Canada granted to M.A.M. for this project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Alexandru Mateescu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplementary Figures

(DOCX 5888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konan, K.V., Le, T.C. & Mateescu, M.A. Enhanced Solubility of Alkaloids by Complexation with Polycarboxylic Materials for Controlled Release Formulations: Case of Peschiera fuchsiaefolia. AAPS PharmSciTech 20, 108 (2019). https://doi.org/10.1208/s12249-019-1315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1315-1

KEY WORDS

Navigation