Skip to main content

Advertisement

Log in

Characterization of Lipid-Based Lyotropic Liquid Crystal and Effects of Guest Molecules on Its Microstructure: a Systematic Review

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Liquid crystals (LCs) are conventionally divided into thermotropic or lyotropic, based on the organization and sequence of the controlled molecular system. Lipid-based lyotropic liquid crystal (LLC), such as lamellar (Lα), bicontinuous cubic (QII), or hexagonal (HII) phases, have attracted wide interest in the last few decades due to their practical potential in diverse applications and notable structural complexity. Various guest molecules, such as biopharmaceuticals, chemicals, and additives, can be solubilized in either aqueous or oily phase. And the LLC microstructure can be altered to affect the rate of drug release eventually. To utilize these microstructural variations to adjust the drug release in drug delivery system (DDS), it is crucial to understand the structure variations of the LLC caused by different types of guest molecules. Therefore, in this article, we review the effect of guest molecules on lipid-based LLC microstructures. In particular, we focus on the different characterization methods to evaluate this change caused by guest substances, such as polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), self-diffusion nuclear magnetic resonance (SD-NMR), and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mulet X, Boyd BJ, Drummond CJ. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. J Colloid Interface Sci. 2013;393:1–20. https://doi.org/10.1016/j.jcis.2012.10.014.

    Article  CAS  PubMed  Google Scholar 

  2. Liron BC, Libster D, Aserin A, et al. Complex dendrimer lyotropic liquid crystalline systems: structural behavior and interactions. J Phys Chem. 2011;115:11984–92. https://doi.org/10.1021/jp2030939.

    Article  CAS  Google Scholar 

  3. Guo CY, Wang J, Cao FL, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15:1032–40. https://doi.org/10.1016/j.drudis.2010.09.006.

    Article  CAS  PubMed  Google Scholar 

  4. Rajabalaya R, Musa MN, Kifli N, David SR. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Drug Des Devel Ther. 2017;11:393–406. https://doi.org/10.2147/DDDT.S103505.eCollection2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang D, Cao YY, Cao MW, Sun Y, Wang J, Hao J. Dual-responsive viscoelastic lyotropic liquid crystal fluids to control the diffusion of hydrophilic and hydrophobic molecules. ChemPhysChem. 2016;17:1–10. https://doi.org/10.1002/cphc.201600066.

    Article  CAS  Google Scholar 

  6. Souza JF, Pontes KS, Alves TFR, et al. Spotlight on biomimetic systems based on lyotropic liquid crystal. Molecules. 2017;22:419. https://doi.org/10.3390/molecules22030419.

    Article  CAS  PubMed Central  Google Scholar 

  7. Akbar S, Anwar A, Ayish A, Elliott JM, Squires AM. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharm Sci. 2017;101:31–42. https://doi.org/10.1016/j.ejps.2017.01.035.

    Article  CAS  PubMed  Google Scholar 

  8. Tangso KJ, Fong WK, Darwish T, Kirby N, Boyd BJ, Hanley TL. Novel spiropyran amphiphiles and their application as light-responsive liquid crystalline components. J Phys Chem. 2013;117:10203–10. https://doi.org/10.1021/jp403840m.

    Article  CAS  Google Scholar 

  9. Poletto FS, Lima FS, Lundberg D, Nylander T, Loh W. Tailoring the internal structure of liquid crystalline nanoparticles responsive to fungal lipases: a potential platform for sustained drug release. Colloids Surf B: Biointerfaces. 2016;147:210–6. https://doi.org/10.1016/j.colsurfb.2016.08.003.

    Article  CAS  PubMed  Google Scholar 

  10. Liu QT, Wang JF, Dong YD, Boyd BJ. Using a selective cadmium-binding peplipid to create responsive liquid crystalline nanomaterials. J Colloid Interface Sci. 2015;449:122–9. https://doi.org/10.1016/j.jcis.2014.11.063.

    Article  CAS  PubMed  Google Scholar 

  11. Adwan S, Rana AD, Al-Bakri AG, et al. Glyceryl monooleate-based otic delivery system of ofloxacin: release profile and bactericidal activity. Pharm Dev Technol. 2015;20:361–6. https://doi.org/10.3109/10837450.2013.871030.

    Article  CAS  PubMed  Google Scholar 

  12. Lee KWY, guyen THN, Hanley T, et al. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int J Pharm. 2009;365:190–9. https://doi.org/10.1016/j.ijpharm.2008.08.022.

    Article  CAS  PubMed  Google Scholar 

  13. Milak S, Zimmer A. Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm. 2015;478:569–87. https://doi.org/10.1016/j.ijpharm.2014.11.072.

    Article  CAS  PubMed  Google Scholar 

  14. Boyd BJ, Khoo SM, Whittaker DV, et al. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm. 2007;340:52–60. https://doi.org/10.1016/j.ijpharm.2007.03.020.

    Article  CAS  PubMed  Google Scholar 

  15. Tran N, Mulet X, Hawley AM, Conn CE, Zhai J, Waddington LJ, et al. First direct observation of stable internally ordered janus nanoparticles created by lipid self-assembly. Nano Lett. 2015;15:4229–33. https://doi.org/10.1021/acs.nanolett.5b01751.

    Article  CAS  PubMed  Google Scholar 

  16. Klaus A, Tiddy GJT, Touraud D, Schramm A, Stühler G, Kunz W. Phase behavior of an extended surfactant in water and a detailed characterization of the concentrated phases. Langmuir. 2010;26:16871–83. https://doi.org/10.1021/la103037q.

    Article  CAS  PubMed  Google Scholar 

  17. Quinn MDJ, Wang T, Du JD, et al. Graphene as a photothermal actuator for control of lipid mesophase structure. Nano. 2017;9:341–8. https://doi.org/10.1039/c6nr08185a.

    Article  CAS  Google Scholar 

  18. Idit AY, Garti N. Transitions induced by solubilized fat into reverse hexagonal mesophases. Colloids Surf B: Biointerfaces. 2005;43:72–82. https://doi.org/10.1016/j.colsurfb.2005.03.011.

    Article  CAS  Google Scholar 

  19. Pan X, Han K, Peng XS, Yang Z, Qin L, Zhu C, et al. Nanostructured cubic as advanced drug delivery system. Curr Pharm Des. 2013;19:6290–7.

    Article  CAS  PubMed  Google Scholar 

  20. Hag LV, Gras SL, Conn CE, et al. Lyotropic liquid crystal engineering moving beyond binary compositional space-ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev. 2017;46:2705–31. https://doi.org/10.1039/c6cs00663a.

    Article  CAS  Google Scholar 

  21. Shrestha LK, Shrestha RG, Aramaki K, et al. Structure and rheology of charge-free reverse micelles in aromatic liquid phenyloctane. J Nanosci Nanotechnol. 2012;12:3701–15. https://doi.org/10.1166/jnn.2012.6170.

    Article  CAS  PubMed  Google Scholar 

  22. Phan S, Fong WK, Kirby N, Hanley T, Boyd BJ. Evaluating the link between self-assembled mesophase structure and drug release. Int J Pharm. 2011;421:176–82. https://doi.org/10.1016/j.ijpharm.2011.09.022.

    Article  CAS  PubMed  Google Scholar 

  23. Zabara A, Mezzenga R. Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases. J Control Release. 2014;188:31–43. https://doi.org/10.1016/j.jconrel.2014.05.052.

    Article  CAS  PubMed  Google Scholar 

  24. Li QT, Wang XD, Yue X, Chen X. Unique phase behaviors in the gemini surfactant/EAN binary system: the role of the hydroxyl group. Langmuir. 2015;31:13511–8. https://doi.org/10.1021/acs.langmuir.5b03809.

    Article  CAS  PubMed  Google Scholar 

  25. Marganit CA, Aserin A, Garti N. H(II) mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac. Colloids Surf B: Biointerfaces. 2010;77:131–8. https://doi.org/10.1016/j.colsurfb.2010.01.013.

    Article  CAS  Google Scholar 

  26. Borgheti-Cardoso LN, Depieri LV, Kooijmans SAA, Diniz H, Calzzani RAJ, Vicentini FTMC, et al. An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs. Eur J Pharm Sci. 2015;74:103–17. https://doi.org/10.1016/j.ejps.2015.04.017.

    Article  CAS  PubMed  Google Scholar 

  27. Sugosh R, Prabhu, Dutt GB. Can critical packing parameter depict probe rotation in block-copolymer reverse micelles? J Phys Chem. 2013;117:5868–74. https://doi.org/10.1021/jp4022807.

    Article  CAS  Google Scholar 

  28. Zhai JL, Tran N, Sarkar S, Fong C, Mulet X, Drummond CJ. Self-assembled lyotropic liquid crystalline phase behavior of monoolein-capric acid-phospholipid nanoparticulate systems. Langmuir. 2017;33:2571–80. https://doi.org/10.1021/acs.langmuir.6b04045.

    Article  CAS  PubMed  Google Scholar 

  29. Azhari H, Strauss M, Hook S. Stabilising cubic with Tween 80 as a step towards targeting lipid nanocarriers to the blood–brain barrier. Eur J Pharm Biopharm. 2016;104:148–55. https://doi.org/10.1016/j.ejpb.2016.05.001.

    Article  CAS  PubMed  Google Scholar 

  30. Fong C, Le T, Calum JD, et al. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev. 2012;41:1297–322. https://doi.org/10.1039/c1cs15148g.

    Article  CAS  PubMed  Google Scholar 

  31. Rizwan SB, Boyd BJ, Rades T. Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv. 2010;7:1133–44. https://doi.org/10.1517/17425247.2010.515584.

    Article  CAS  PubMed  Google Scholar 

  32. Chen YL, Ma P, Gui SY. Cubic and hexagonal liquid crystals as drug delivery systems. Biomed Res Int. 2014;2014:815981. https://doi.org/10.1155/2014/815981.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nelli RK, Aleandri S, Speziale C, et al. Stimuli-responsive lipidic cubic phase: triggered release and sequestration of guest molecules. Chem Eur J. 2015;21:1873–7. https://doi.org/10.1002/chem.201405580.

    Article  CAS  Google Scholar 

  34. Fong WK, Hanley T, Boyd BJ. Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release. 2009;135:218–26. https://doi.org/10.1016/j.jconrel.2009.01.009.

    Article  CAS  PubMed  Google Scholar 

  35. Rizwan SB, Hanley T, Boyd BJ, Rades T, Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterisation, swelling and release kinetics. J Pharm Sci. 2009;98:4191–204. https://doi.org/10.1002/jps.21724.

    Article  CAS  PubMed  Google Scholar 

  36. Achrai B, Libster D, Aserin A, Garti N. Solubilization of gabapentin into HII mesophases. J Phys Chem. 2011;115:825–35. https://doi.org/10.1021/jp108801d.

    Article  CAS  Google Scholar 

  37. Mei LL, Xie YC, Huang XT, et al. An injectable in situ gel with cubic and hexagonal nanostructures for local treatment of chronic periodontitis. Drug Deliv. 2017;24:1148–58. https://doi.org/10.1080/10717544.2017.1359703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qin LZ, Mei LL, Shan ZY, Huang Y, Pan X, Li G, et al. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent. Drug Dev Ind Pharm. 2016;42:307–16. https://doi.org/10.3109/03639045.2015.1052079.

    Article  CAS  PubMed  Google Scholar 

  39. Garti N, Hoshen G, Aserin A. Lipolysis and structure controlled drug release from reversed hexagonal mesophase. Colloids Surf B: Biointerfaces. 2012;94:36–43. https://doi.org/10.1016/j.colsurfb.2012.01.013.

    Article  CAS  PubMed  Google Scholar 

  40. Marganit CA, Aserin A, Garti N. HII mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac. Colloids Surf B: Biointerfaces. 2010;77:131–8. https://doi.org/10.1016/j.colsurfb.2010.01.013.

    Article  CAS  Google Scholar 

  41. Liron BC, Idit YA, Abraham A, et al. Solubilization of vitamin E into HIILLC mesophase in the presence and in the absence of vitamin C. Langmuir. 2010;26:3648–53. https://doi.org/10.1021/la903100m.

    Article  CAS  Google Scholar 

  42. Liang X, Chen YL, Jiang XJ, Wang SM, Zhang JW, Gui SY. HII mesophase as a drug delivery system for topical application of methyl salicylate. Eur J Pharm Sci. 2017;100:155–62. https://doi.org/10.1016/j.ejps.2016.12.033.

    Article  CAS  PubMed  Google Scholar 

  43. Chen YL, Liang X, Ma P, Tao Y, Wu X, Wu X, et al. Phytantriol-based in situ liquid crystals with long-term release for intra-articular administration. AAPS PharmSciTech. 2015;16:846–54. https://doi.org/10.1208/s12249-014-0277-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manish HS, Anant PK. Cubic liquid crystalline glyceryl monooleate matrices for oral delivery of enzyme. Int J Pharm. 2005;294:161–71. https://doi.org/10.1016/j.ijpharm.2005.01.019.

    Article  CAS  Google Scholar 

  45. Meike H, Stefan M, Christel C, et al. Thermotropic transition structures in the ternary system lecithin/isopropyl myristate/water. Colloids Surf A Physicochem Eng Asp. 2005;259:81–7. https://doi.org/10.1016/j.colsurfa.2005.02.013.

    Article  CAS  Google Scholar 

  46. Patil SS, Venugopal E, Bhat S, Mahadik KR, Paradkar AR. Mapping ion-induced mesophasic transformation in lyotropic in situ gelling system and its correlation with pharmaceutical performance. Pharm Res. 2013;30:1906–14. https://doi.org/10.1007/s11095-013-1033-4.

    Article  CAS  PubMed  Google Scholar 

  47. Scott JF, Xavier M, Adrian H, et al. Controlling nanostructure and lattice parameter of the inverse bicontinuous cubic phases in functionalised phytantriol dispersions. J Colloid Interface Sci. 2013;408:117–24. https://doi.org/10.1016/j.jcis.2013.07.002.

    Article  CAS  Google Scholar 

  48. Franc M, Anniina S, Otto G, et al. Monoglyceride-based cubic stabilized by laponite: separating the effects of stabilizer, pH and temperature. Colloids Surf A Physicochem Eng Asp. 2010;358:50–6. https://doi.org/10.1016/j.colsurfa.2010.01.021.

    Article  CAS  Google Scholar 

  49. Kim DH, Lim S, Shim JW, Song JE, Chang JS, Jin KS, et al. A simple evaporation method for large-scale production of liquid crystalline lipid nanoparticles with various internal structures. ACS Appl Mater Interfaces. 2015;7:20438–46. https://doi.org/10.1021/acsami.5b06413.

    Article  CAS  PubMed  Google Scholar 

  50. Matthew JD, Oleksandr OM, Steven PA. A vesicle-to-worm transition provides a new high-temperature oil thickening mechanism. Angew Chem Int Ed. 2017;56:1–6. https://doi.org/10.1002/anie.201609365.

    Article  CAS  Google Scholar 

  51. Kristian JT, Paulo HC, Patrick S, et al. Antimicrobial activity from colistin-heparin lamellar-phase complexes for the coating of biomedical devices. ACS Appl Mater Interfaces. 2016;8:31321–9. https://doi.org/10.1021/acsami.6b10027.

    Article  CAS  Google Scholar 

  52. Serena M, Leandro RS, Sergio SF, et al. Cytochrome-c affects the monoolein polymorphism: consequences for stability and loading efficiency of drug delivery systems. Langmuir. 2016;32:873–81. https://doi.org/10.1021/acs.langmuir.5b03507.

    Article  CAS  Google Scholar 

  53. Alexey K, Azat B, Olsson U, et al. DNA with double-chained amphiphilic counterions and its interaction with lecithin. Langmuir. 2012;28:13698–704. https://doi.org/10.1021/la302720d.

    Article  CAS  Google Scholar 

  54. Seyedeh PA, Ribeiro IR, Ben JB, et al. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubic. Colloids Surf B: Biointerfaces. 2016;145:845–53. https://doi.org/10.1016/j.colsurfb.2016.05.091.

    Article  CAS  Google Scholar 

  55. Idit AY, Doron A, Tehila M, et al. The role of glycerol and phosphatidylcholine in solubilizing and enhancing insulin stability in reverse hexagonal mesophases. J Colloid Interface Sci. 2011;364:379–87. https://doi.org/10.1016/j.jcis.2011.05.047.

    Article  CAS  Google Scholar 

  56. Mei LL, Xie YC, Huang Y, Wang B, Chen J, Quan G, et al. Injectable in situ forming gel based on lyotropic liquid crystal for persistent postoperative analgesia. Acta Biomater. 2017;17:30754–67. https://doi.org/10.1016/j.actbio.2017.11.057.

    Article  CAS  Google Scholar 

  57. Anan Y, Barbara S, Michael R. Self-assembled nanostructures of fully hydrated monoelaidin-elaidic acid and monoelaidin-oleic acid systems. Langmuir. 2012;28:10105–19. https://doi.org/10.1021/la3019716.

    Article  CAS  Google Scholar 

  58. Dima L, Abraham A, Doron Y, et al. Soft matter dispersions with ordered inner structures, stabilized by ethoxylated phytosterols. Colloids Surf B: Biointerfaces. 2009;74:202–15. https://doi.org/10.1016/j.colsurfb.2009.07.020.

    Article  CAS  Google Scholar 

  59. Shen HH, Jonathan GC, Florian H, et al. The influence of dipalmitoyl phosphatidylserine on phase behaviour of and cellular response to lyotropic liquid crystalline dispersions. Biomaterials. 2010;31:9473–81. https://doi.org/10.1016/j.biomaterials.2010.08.030.

    Article  CAS  PubMed  Google Scholar 

  60. Tran N, Hawley A, Zhai JL, et al. High-throughput screening of saturated fatty acid influence on nanostructure of lyotropic liquid crystalline lipid nanoparticles. Langmuir. 2016;32:4509–20. https://doi.org/10.1021/acs.langmuir.5b03769.

    Article  CAS  PubMed  Google Scholar 

  61. Adam JT, Calum JD, Ben JB, et al. Disposition and association of the steric stabilizer Pluronic® F127 in lyotropic liquid crystalline nanostructured particle dispersions. J Colloid Interface Sci. 2013;392:288–96. https://doi.org/10.1016/j.jcis.2012.09.051.

    Article  CAS  Google Scholar 

  62. Wibroe PP, Mat Azmi ID, Nilsson C, et al. Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: towards development of safe tunable intravenous lipid nanocarriers. Nanomedicine. 2015;11:1909–14. https://doi.org/10.1016/j.nano.2015.08.003.

    Article  CAS  PubMed  Google Scholar 

  63. Georgeta P, Justas B, Tommy N, et al. Liquid crystalline phases and their dispersions in aqueous mixtures of glycerol monooleate and glyceryl monooleyl ether. Langmuir. 2007;23:496–503. https://doi.org/10.1021/la062344u.

    Article  CAS  Google Scholar 

  64. Christa N, Brianda BL, Annukka K, et al. SPECT/CT imaging of radiolabeled cubic and hexagonal for potential theranostic applications. Biomaterials. 2013;34:8491–503. https://doi.org/10.1016/j.biomaterials.2013.07.055.

    Article  CAS  Google Scholar 

  65. Tehila MB, Abraham A, Nissim G. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase. J Colloid Interface Sci. 2017;486:184–93. https://doi.org/10.1016/j.jcis.2016.09.074.

    Article  CAS  Google Scholar 

  66. Marganit CA, Dima L, Abraham A, et al. Penetratin-induced transdermal delivery from HII mesophases of sodium diclofenac. J Control Release. 2012;159:419–28. https://doi.org/10.1016/j.jconrel.2012.01.025.

    Article  CAS  Google Scholar 

  67. Nicole BB, Ben JB, Dong YD, et al. Tailoring liquid crystalline lipid nanomaterials for controlled release of macromolecules. Int J Pharm. 2015;495:241–8. https://doi.org/10.1016/j.ijpharm.2015.08.072.

    Article  CAS  Google Scholar 

  68. Ashraf MD, Noguchi SJ, Iwao Y, et al. Preparation and characterization of SN-38-encapsulated phytantriol cubic containing α-monoglyceride additives. Chem Pharm Bull. 2016;64:577–84. https://doi.org/10.1248/cpb.c15-00984.

    Article  Google Scholar 

  69. Anan Y, Liliana DC, Laurent S, et al. Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir. 2006;22:9919–27. https://doi.org/10.1021/la061303v.

    Article  CAS  Google Scholar 

  70. Sagalowicz L, Guillot S, Acquistapace S, Schmitt B, Maurer M, Yaghmur A, et al. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides. Langmuir. 2013;29:8222–32. https://doi.org/10.1021/la305052q.

    Article  CAS  PubMed  Google Scholar 

  71. Tehila M, Paul BI, Dmitry B, et al. Modulation of physical properties of reverse hexagonal mesophases: a dielectric spectroscopy study. J Colloid Interface Sci. 2013;396:178–86. https://doi.org/10.1016/j.jcis.2012.12.067.

    Article  CAS  Google Scholar 

  72. Renata N, Raffaele M. Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels. Langmuir. 2012;28:16455–62. https://doi.org/10.1021/la303833s.

    Article  CAS  Google Scholar 

  73. Marganit CA, Alexander IS, Francesca MO, et al. On the correlation between the structure of lyotropic carriers and the delivery profiles of two common NSAIDs. Colloids Surf B: Biointerfaces. 2014;122:231–40. https://doi.org/10.1016/j.colsurfb.2014.04.026.

    Article  CAS  Google Scholar 

  74. Liron BC, Abraham A, Garti N. Structural characterization of lyotropic liquid crystals containing a dendrimer for solubilization and release of gallic acid. Colloids Surf B: Biointerfaces. 2013;112:87–95. https://doi.org/10.1016/j.colsurfb.2013.06.051.

    Article  CAS  Google Scholar 

  75. Dima L, Abraham A, Ellen W, et al. An HII liquid crystal-based delivery system for cyclosporin A: physical characterization. J Colloid Interface Sci. 2007;308:514–24. https://doi.org/10.1016/j.jcis.2006.12.084.

    Article  CAS  Google Scholar 

  76. Jonas GF, Helena LW, Mats A, et al. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997;13:6964–71.

    Article  Google Scholar 

  77. Idit AY, Ellen W, Einav BS, et al. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir. 2007;23:637–3645. https://doi.org/10.1021/la062851b.

    Article  CAS  Google Scholar 

  78. Rizwan SB, Assmus D, Boehnke A, Hanley T, Boyd BJ, Rades T, et al. Preparation of phytantriol cubic by solvent precursor dilution for the delivery of protein vaccines. Eur J Pharm Biopharm. 2011;79:15–22. https://doi.org/10.1016/j.ejpb.2010.12.034.

    Article  CAS  PubMed  Google Scholar 

  79. Dong YD, Larson I, Hanley T, Boyd BJ. Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir. 2006;22:9512–8. https://doi.org/10.1021/la061706v.

    Article  CAS  PubMed  Google Scholar 

  80. Vadim C, Jeffrey C, Miroslav ZP, et al. Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol. 2006;357:1605–18. https://doi.org/10.1016/j.jmb.2006.01.049.

    Article  CAS  Google Scholar 

  81. Leonie VH, Connie D, Le TC, et al. In meso crystallization: compatibility of different lipid bicontinuous cubic mesophases with the cubic crystallization screen in aqueous solution. Cryst Growth Des. 2014;14:1771–81. https://doi.org/10.1021/cg4018954.

    Article  CAS  Google Scholar 

  82. Liron BC, Dima L, Dietmar A, et al. Reversed hexagonal lyotropic liquid crystal and open shell glycodendrimers as potential vehicles for sustained release of Na-DFC. J Phys Chem B. 2014;118:4016–24. https://doi.org/10.1021/jp4125974.

    Article  CAS  Google Scholar 

  83. Marganit CA, Libster D, Aserin A, et al. Sodium diclofenac and cell-penetrating peptides embedded in HII mesophases: physical characterization and delivery. J Phys Chem B. 2011;115:10189–97. https://doi.org/10.1021/jp112067v.

    Article  CAS  Google Scholar 

  84. Liron BC, Dima L, Maria FO, et al. Structural behavior and interactions of dendrimer within lyotropic liquid crystals, monitored by EPR spectroscopy and rheology. J Phys Chem B. 2012;116:2420–9. https://doi.org/10.1021/jp212008a.

    Article  CAS  Google Scholar 

  85. Liron BC, Aserin A, Garti N. The effect of dendrimer generations on the structure of QG LLC mesophase and drug release. Colloids Surf B: Biointerfaces. 2014;122:30–7. https://doi.org/10.1016/j.colsurfb.2014.05.013.

    Article  CAS  Google Scholar 

  86. Kwak SJ, Lafleur M. Effect of dimethyl sulfoxide on the phase behavior of model stratum corneum lipid mixtures. Chem Phys Lipids. 2009;161:11–21. https://doi.org/10.1016/j.chemphyslip.2009.06.141.

    Article  CAS  PubMed  Google Scholar 

  87. Hoffman RE, Darmon E, Aserin A, Garti N. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1—proof of concept. J Colloid Interface Sci. 2016;463:349–57. https://doi.org/10.1016/j.jcis.2014.06.041.

    Article  CAS  PubMed  Google Scholar 

  88. Takaaki M, Yasuo Y, Etsuo Y, et al. Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir. Int J Pharm. 2012;422:160–9. https://doi.org/10.1016/j.ijpharm.2011.10.046.

    Article  CAS  Google Scholar 

  89. Groen D, Berthaud F, Bouwstra JA, Chapuis C, Gooris GS, Boncheva M. In vitro model systems for studying the impact of organic chemicals on the skin barrier lipids. Biochim Biophys Acta. 2014;1838:310–8. https://doi.org/10.1016/j.bbamem.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  90. Song ZH, Xin X, Shen JL, Jiao J, Xia C, Wang S, et al. Manipulation of lyotropic liquid crystal behavior of ionic liquid-type imidazolium surfactant by amino acids. Colloids Surf A Physicochem Eng Asp. 2017;518:7–14. https://doi.org/10.1016/j.colsurfa.2017.01.004.

    Article  CAS  Google Scholar 

  91. Natali AZ, Aserin A, Garti N. Food volatile compounds facilitating HII mesophase formation: solubilization and stability. J Agric Food Chem. 2011;59:5554–64. https://doi.org/10.1021/jf200466e.

    Article  CAS  Google Scholar 

  92. Paul BI, Dima L, Abraham A, et al. Influence of cyclosporine A on molecular interactions in lyotropic reverse hexagonal liquid crystals. J Phys Chem B. 2010;114:12785–91. https://doi.org/10.1021/jp104028m.

    Article  CAS  Google Scholar 

  93. Tehila M, Maria FO, Alexander IS, et al. Structural effects of insulin-loading into HII mesophases monitored by electron paramagnetic resonance (EPR), small angle X-ray spectroscopy (SAXS), and attenuated total reflection Fourier transform spectroscopy (ATR-FTIR). J Phys Chem B. 2011;115:8054–62. https://doi.org/10.1021/jp2034455.

    Article  CAS  Google Scholar 

  94. Lidich N, Ottaviani MF, Hoffman RE, et al. Docosahexaenoic acid triglyceride-based microemulsions with an added dendrimer—structural considerations. J Colloid Interface Sci. 2016;483:374–84. https://doi.org/10.1016/j.jcis.2016.08.036.

    Article  CAS  PubMed  Google Scholar 

  95. Patil SS, Venugopal E, Bhat S, Mahadik KR, Paradkar AR. Probing influence of mesophasic transformation on performance of self-emulsifying system: effect of ion. Mol Pharm. 2012;9:318–24. https://doi.org/10.1021/mp200541r.

    Article  CAS  PubMed  Google Scholar 

  96. Hamid RM, Adrian CW, Brian WB. A lamellar matrix model for stratum corneum intercellular lipids. V. Effects of terpene penetration enhancers on the structure and thermal behaviour of the matrix. Int J Pharm. 1997;146:41–54.

    Article  Google Scholar 

  97. Hamid RM, Adrian CW, Brian WB. A lamellar matrix model for stratum corneum intercellular lipids. I. Characterisation and comparison with stratum corneum inter-cellular structure. Int J Pharm. 1996;131:103–15.

    Article  Google Scholar 

  98. Rubio L, Alonso C, Rodríguez G, Cócera M, Barbosa-Barros L, Coderch L, et al. Bicellar systems as vehicle for the treatment of impaired skin. Eur J Pharm Biopharm. 2014;86:212–8. https://doi.org/10.1016/j.ejpb.2013.05.012.

    Article  CAS  PubMed  Google Scholar 

  99. Mohamed N, Mohamed KG, Ahmed A, et al. In vitro and in vivo evaluation of cubic containing 5-fluorouracil for liver targeting. Acta Pharm Sin B. 2015;5:79–88. https://doi.org/10.1016/j.apsb.2014.12.001.

    Article  Google Scholar 

  100. Shifra R, Maria FO, Alexander IS, et al. Behavior of PPI-G2 dendrimer in a microemulsion. J Phys Chem B. 2017;121:2339–49. https://doi.org/10.1021/acs.jpcb.6b10237.

    Article  CAS  Google Scholar 

  101. Nina L, Ellen JW, Abraham A, et al. Water-dilutable microemulsions for transepithelial ocular delivery of riboflavin phosphate. J Colloid Interface Sci. 2016;463:342–8. https://doi.org/10.1016/j.jcis.2015.02.011.

    Article  CAS  Google Scholar 

  102. Chu JL, Cheng YL, Rao AV, Nouraei M, Zarate-Muñoz S, Acosta EJ. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals. Int J Pharm. 2014;471:92–102. https://doi.org/10.1016/j.ijpharm.2014.05.001.

    Article  CAS  PubMed  Google Scholar 

  103. Sarah F, Ellen JW, Abraham A, et al. Solubilization of simvastatin and phytosterols in a dilutable microemulsion system. Colloids Surf B: Biointerfaces. 2013;107:35–42. https://doi.org/10.1016/j.colsurfb.2013.01.036.

    Article  CAS  Google Scholar 

  104. Libster D, Aserin A, Garti N. Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications. J Colloid Interface Sci. 2011;356:375–86. https://doi.org/10.1016/j.jcis.2011.01.047.

    Article  CAS  PubMed  Google Scholar 

  105. Efrat R, Aserin A, Garti N. On structural transitions in a discontinuous micellar cubic phase loaded with sodium diclofenac. J Colloid Interface Sci. 2008;321:166–76. https://doi.org/10.1016/j.jcis.2008.01.013.

    Article  CAS  PubMed  Google Scholar 

  106. Balázs B, Sipos P, Danciu C, Avram S, Soica C, Dehelean C, et al. ATR-FTIR and Raman spectroscopic investigation of the electroporation-mediated transdermal delivery of a nanocarrier system containing an antitumour drug. Biomed Opt Express. 2015;7:67–78. https://doi.org/10.1364/BOE.7.000067.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Audrius M, Gediminas N, Zita T, et al. Infrared and Raman bands of phytantriol as markers of hydrogen bonding and interchain interaction. Spectrochim Acta A. 2005;62:945–57. https://doi.org/10.1016/j.saa.2005.03.024.

    Article  CAS  Google Scholar 

  108. Zhao YR, Yue X, Wang XD, Chen X. Lyotropic liquid crystalline phases with a series of N-alkyl-N-methylpiperidinium bromides and water. J Colloid Interface Sci. 2013;389:199–205. https://doi.org/10.1016/j.jcis.2012.09.032.

    Article  CAS  PubMed  Google Scholar 

  109. Feast GC, Lepitre T, Tran N, Conn CE, Hutt OE, Mulet X, et al. Inverse hexagonal and cubic micellar lyotropic liquid crystalline phase behaviour of novel double chain sugar-based amphiphiles. Colloids Surf B: Biointerfaces. 2017;151:34–8. https://doi.org/10.1016/j.colsurfb.2016.12.004.

    Article  CAS  PubMed  Google Scholar 

  110. Calixto GM, Garcia MH, Cilli EM, Chiavacci L, Chorilli M. Design and characterization of a novel p1025 peptide-loaded liquid crystalline system for the treatment of dental caries. Molecules. 2016;21:158. https://doi.org/10.3390/molecules21020158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Souza C, Watanabe E, Aires CP. Effect of liquid crystalline systems containing antimicrobial compounds on infectious skin bacteria. AAPS PharmSciTech. 2017;18:2110–9. https://doi.org/10.1208/s12249-016-0690-0.

    Article  CAS  PubMed  Google Scholar 

  112. Carvalho AL, Silva JA, Lira AA, et al. Evaluation of microemulsion and lamellar liquid crystalline systems for transdermal zidovudine delivery. J Pharm Sci. 105:2188–93. https://doi.org/10.1016/j.xphs.2016.04.013.

  113. Verma P. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide. Drug Deliv. 2016;23:3043–54. https://doi.org/10.3109/10717544.2016.1143057.

    Article  CAS  PubMed  Google Scholar 

  114. Gabr MM, Mortada SM. Hexagonal liquid crystalline nanodispersions proven superiority for enhanced oral delivery of rosuvastatin: in vitro characterization and in vivo pharmacokinetic study. J Pharm Sci. 2017;106:3103–12. https://doi.org/10.1016/j.xphs.2017.04.060.

    Article  CAS  PubMed  Google Scholar 

  115. Liu R, Wang S, Fang S, Wang J, Chen J, Huang X, et al. Liquid crystalline nanoparticles as an ophthalmic delivery system for tetrandrine: development, characterization, and in vitro and in vivo evaluation. Nanoscale Res Lett. 2016;11:254. https://doi.org/10.1186/s11671-016-1471-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dante MCL, Borgheti-Cardoso LN, Fantini MCA, et al. Liquid crystalline systems based on glyceryl monooleate and penetration enhancers for skin delivery of celecoxib: characterization, in vitro drug release, and in vivo studies. J Pharm Sci. 2018;107:870–8. https://doi.org/10.1016/j.xphs.2017.10.039.

    Article  CAS  PubMed  Google Scholar 

  117. Li Q, Cao JJ, Li ZG, Chu X. Cubic liquid crystalline gels based on glycerol monooleate for intra-articular injection. AAPS PharmSciTech. 2017;2017:858–65. https://doi.org/10.1208/s12249-017-0894-y.

    Article  CAS  Google Scholar 

  118. Souza C, Watanabe E, Borgheti-Cardoso LN, de Abreu Fantini MC, Lara MG. Mucoadhesive system formed by liquid crystals for buccal administration of poly(hexamethylene biguanide) hydrochloride. J Pharm Sci. 2014;103:3914–23. https://doi.org/10.1002/jps.24198.

    Article  CAS  PubMed  Google Scholar 

  119. Liu Q, Hu J, Whittaker MR, Davis TP, Boyd BJ. Nitric oxide-sensing actuators for modulating structure in lipid-based liquid crystalline drug delivery systems. J Colloid Interface Sci. 2017;508:517–24. https://doi.org/10.1016/j.jcis.2017.08.079.

    Article  CAS  PubMed  Google Scholar 

  120. Angelova A, Angelov B, Mutafchieva R, Lesieur S, Couvreur P. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc Chem Res. 2011;44:147–56. https://doi.org/10.1021/ar100120v.

    Article  CAS  PubMed  Google Scholar 

  121. Otte A, Soh BK, Yoon G. Liquid crystalline drug delivery vehicles for oral and IV/subcutaneous administration of poorly soluble (and soluble) drugs. Int J Pharm. 2018;539:175–83. https://doi.org/10.1016/j.ijpharm.2018.01.037.

    Article  CAS  PubMed  Google Scholar 

  122. Huang JY, Peng TT, Li YR, Zhan Z, Zeng Y, Huang Y, et al. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech. 2017;18:2919–26. https://doi.org/10.1208/s12249-017-0763-8.

    Article  CAS  PubMed  Google Scholar 

  123. Martiel IB, Baumann N, Vallooran JJ, Bergfreund J, Sagalowicz L, Mezzenga R. Oil and drug control the release rate from lyotropic liquid crystals. J Control Release. 2015;204:78–84. https://doi.org/10.1016/j.jconrel.2015.02.034.

    Article  CAS  PubMed  Google Scholar 

  124. Barauskas J, Cervin C, Jankunec M, Špandyreva M, Ribokaitė K, Tiberg F, et al. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Int J Pharm. 2010;391:284–91. https://doi.org/10.1016/j.ijpharm.2010.03.016.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks are also expressed to Xiaoqin Chu for useful discussions.

Funding

We are grateful for the financial supports from National Natural Science Foundation of China (No. 81274099), Anhui Provincial Talents Project for youth in Universities (No. gxyq2018025), Anhui Provincial Natural Science Foundation (No. 1408085QH183), and Exploratory Research Projects of Anhui University of Chinese Medicine (No. 2016ts066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Chu.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y., Gui, S. et al. Characterization of Lipid-Based Lyotropic Liquid Crystal and Effects of Guest Molecules on Its Microstructure: a Systematic Review. AAPS PharmSciTech 19, 2023–2040 (2018). https://doi.org/10.1208/s12249-018-1069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1069-1

KEY WORDS

Navigation