Skip to main content
Log in

Encapsulation in Polymeric Microparticles Improves Daptomycin Activity Against Mature Staphylococci Biofilms—a Thermal and Imaging Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Eradication of Gram-positive biofilms is a critical aspect in implant-associated infection treatment. Although antibiotic-containing particulate carriers may be a promising strategy for overcoming biofilm tolerance, the assessment of their interaction with biofilms has not been fully explored. In the present work, the antibiofilm activity of daptomycin- and vancomycin-loaded poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles against methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive S. epidermidis biofilms was investigated using isothermal microcalorimetry (IMC) and fluorescence in situ hybridization (FISH). The minimal biofilm inhibitory concentrations (MBIC) of MRSA biofilms, as determined by IMC, were 5 and 20 mg/mL for daptomycin- and vancomycin-loaded PMMA microparticles, respectively. S. epidermidis biofilms were less susceptible, with a MBIC of 20 mg/mL for daptomycin-loaded PMMA microparticles. Vancomycin-loaded microparticles were ineffective. Adding EUD to the formulation caused a 4- and 16-fold reduction of the MBIC values of daptomycin-loaded microparticles for S. aureus and S. epidermidis, respectively. FISH corroborated the IMC results and provided additional insights on the antibiofilm effect of these particles. According to microscopic analysis, only daptomycin-loaded PMMA-EUD microparticles were causing a pronounced reduction in biofilm mass for both strains. Taken together, although IMC indicated that a biofilm inhibition was achieved, microscopy showed that the biofilm was not eradicated and still contained FISH-positive, presumably viable bacteria, thus indicating that combining the two techniques is essential to fully assess the effect of microparticles on staphylococcal biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351:1645–54.

    Article  CAS  PubMed  Google Scholar 

  2. Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, et al. ESCMID guideline for the diagnosis and treatment of biofilm infections. Clin Microbiol Infect. 2015;21(Suppl 1):S1–25.

    Article  PubMed  Google Scholar 

  3. Santos Ferreira I, Bettencourt A, Almeida AJ. Nanoparticulate platforms for targeting bone infections: meeting a major therapeutic challenge. Nanomed (Lond). 2015;10:3147–66.

    Article  Google Scholar 

  4. Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release. 2014;190C:607–23.

    Article  Google Scholar 

  5. Steenbergen JN, Alder J, Thorne GM, Tally FP. Daptomycin: a lipopeptide antibiotic for the treatment of serious gram-positive infections. J Antimicrob Chemother. 2005;55:283–8.

    Article  CAS  PubMed  Google Scholar 

  6. Mihailescu R, Tafin UF, Corvec S, Oliva A, Betrisey B, Borens O, et al. High activity of fosfomycin and rifampin against methicillin-resistant Staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58:2547–53.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferreira IS, Bettencourt A, Bétrisey B, Gonçalves LM, Trampuz A, Almeida AJ. Improvement of the antibacterial activity of daptomycin-loaded polymeric microparticles by Eudragit RL 100: an assessment by isothermal microcalorimetry. Int J Pharm. 2015;485:171–82.

    Article  CAS  PubMed  Google Scholar 

  8. Lewis G, Daniels AU. Use of isothermal heat-conduction microcalorimetry (IHCMC) for the evaluation of synthetic biomaterials. J Biomed Mater Res B Appl Biomater. 2003;66:487–501.

    Article  PubMed  Google Scholar 

  9. Braissant O, Wirz D, Gopfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Von AU, Wirz D, Daniels AU. Isothermal microcalorimetry—a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiol. 2009;9:106. https://doi.org/10.1186/1471-2180-9-106.

    Article  Google Scholar 

  11. Santos Ferreira I, Bettencourt AF, Gonçalves LM, Kasper S, Bétrisey B, Kikhney J, et al. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms. Int J Nanomed. 2015;10:4351–66.

    Google Scholar 

  12. Moter A, Göbel U. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods. 2000;41:85–112.

    Article  CAS  PubMed  Google Scholar 

  13. Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol. 2012;65:127–45.

    Article  CAS  PubMed  Google Scholar 

  14. Schillinger C, Petrich A, Lux R, Riep B, Kikhney J, Friedmann A, et al. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis. PLoS One. 2012;7:e37583. https://doi.org/10.1371/journal.pone.0037583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6:199–210.

    Article  CAS  PubMed  Google Scholar 

  16. Poulsen LK, Ballard G, Stahl DA. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 1993;59:1354–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. DeLong E, Wickham G, Pace N. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989;243:1360–3.

    Article  CAS  PubMed  Google Scholar 

  18. European Committee on Antimicrobial Susceptibility Testing (EUCAST), 2014. Antimicrobial wild type distributions of microorganisms—reference database. http://www.eucast.org/. Accessed 16 Aug 2017.

  19. Mack D, Siemssen N, Laufs R. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun. 1992;60:2048–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bettencourt A, Florindo HF, Ferreira IF, Matos A, Monteiro J, Neves C, et al. Incorporation of tocopherol acetate-containing microparticles in acrylic bone cement. J Microencapsul. 2010;27:533–41.

    Article  CAS  PubMed  Google Scholar 

  21. Clinical and Laboratory Standards Institute. Methods for determining bactericidal activity of antimicrobial agents; approved guideline M26-A. Wayne, PA, USA: CLSI; 1999.

    Google Scholar 

  22. Amann RI, Blinder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Trebesius K, Leitritz L, Adler K, Schubert S, Autenrieth IB, Heesemann J. Culture independent and rapid identification of bacterial pathogens in necrotising fasciitis and streptococcal toxic shock syndrome by fluorescence in situ hybridisation. Med Microbiol Immunol. 2000;188:169–75.

    Article  CAS  PubMed  Google Scholar 

  24. Dillen K, Vandervoort J, Van den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit RS100 or RL100/PLGA nanoparticles. Int J Pharm. 2006;314:72–82.

    Article  CAS  PubMed  Google Scholar 

  25. Takács-Novák K, Noszál B, Tokes-Kovesdi M, Szasz G. Acid base properties and proton-speciation of vancomycin. Int J Pharm. 1993;89:261–3.

    Article  Google Scholar 

  26. Hajdu S, Lassnigg A, Graniger W, Hirschl AM, Presterl E. Effects of vancomycin, daptomycin, fosfomycin, tigecycline, and ceftriaxone on Staphylococcus epidermidis biofilms. J Orthop Res. 2009;27:1361–5.

    Article  CAS  PubMed  Google Scholar 

  27. Leite B, Gomes F, Teixeira P, Souza C, Pizzolitto E, Oliveira R. In vitro activity of daptomycin, linezolid and rifampicin on Staphylococcus epidermidis biofilms. Curr Microbiol. 2011;63:313–7.

    Article  CAS  PubMed  Google Scholar 

  28. Claessens J, Roriz M, Merckx R, Baatsen P, Van Mellaert L, Van Eldere J. Inefficacy of vancomycin and teicoplanin in eradicating and killing Staphylococcus epidermidis biofilms in vitro. Int J Antimicrob Agents. 2015;45:368–75.

    Article  CAS  PubMed  Google Scholar 

  29. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.

    Article  PubMed  Google Scholar 

  30. Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull. 2011;36:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kerkhof L, Ward BB. Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Appl Environ Microbiol. 1993;59:1303–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. van der Vliet GM, Schepers P, Schukkink RA, van Gemen B, Klatser PR. Assessment of mycobacterial viability by RNA amplification. Antimicrob Agents Chemother. 1994;38:1959–65.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stewart PS, Zhang T, Xu R, Pitts B, Walters MC, Roe F, et al. Reaction–diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. NPJ Biofilms Microbiomes. 2016;2:16012. https://doi.org/10.1038/npjbiofilms.2016.12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Novartis Pharma (Basel, Switzerland) for the gift of daptomycin. The paper is based upon work from COST action (TD1305, IPROMEDAI).

Funding

This work was supported by the Portuguese government (Fundação para a Ciência e a Tecnologia) and FEDER Grants SFRH/BD/69260/2010, research projects proj. 6818 FCT/DAAD and EXCL/CTM-NAN/0166/2012 and strategic project iMed.ULisboa (UID/DTP/04138/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Francisca Bettencourt or António J. Almeida.

Electronic Supplementary Material

ESM 1

(DOCX 786 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos Ferreira, I., Kikhney, J., Kursawe, L. et al. Encapsulation in Polymeric Microparticles Improves Daptomycin Activity Against Mature Staphylococci Biofilms—a Thermal and Imaging Study. AAPS PharmSciTech 19, 1625–1636 (2018). https://doi.org/10.1208/s12249-018-0974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0974-7

KEYWORDS

Navigation