Skip to main content

Advertisement

Log in

Enhancement of Dissolution and Skin Permeability of Pentazocine by Proniosomes and Niosomal Gel

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Proniosomes (PN) are the dry water-soluble carrier systems that may enhance the oral bioavailability, stability, and topical permeability of therapeutic agents. The low solubility and low oral bioavailability due to extensive first pass metabolism make Pentazocine as an ideal candidate for oral and topical sustained release delivery. The present study was aimed to formulate the PNs by quick slurry method that are converted to niosomes (liquid dispersion) by hydration, and subsequently formulated to semisolid niosomal gel. The PNs were found in spherical shape in the SEM and stable in the physicochemical and thermal analysis (FTIR, TGA, and XRD). The quick slurry method produced high recovery (> 80% yield) and better flow properties (θ = 28.1–37.4°). After hydration, the niosomes exhibited desirable entrapment efficiency (44.45–76.23%), size (4.98–21.3 μm), and zeta potential (− 9.81 to − 21.53 mV). The in vitro drug release (T100%) was extended to more than three half-lives (2–4 h) and showed good fit to Fickian diffusion indicated by Korsmeyer-Peppas model (n = 0.136–0.365 and R2 = 0.9747–0.9954). The permeation of niosomal gel was significantly enhanced across rabbit skin compared to the pure drug-derived gel. Therefore, the PNs are found promising candidates for oral as dissolution enhancement and sustained release for oral and topical delivery of pentazocine for the management of cancer pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238-252. https://doi.org/10.1016/S0022-2836(65)80093-6.

    Article  CAS  PubMed  Google Scholar 

  2. Bangham A, Standish M, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol. 1965;13(1):253-259. https://doi.org/10.1016/S0022-2836(65)80094-8.

    Article  CAS  PubMed  Google Scholar 

  3. Deamer DW. From “Banghasomes” to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J. 2010;24(5):1308–10. https://doi.org/10.1096/fj.10-0503.

    Article  CAS  PubMed  Google Scholar 

  4. Toh M-R, Chiu GNC. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci. 2013;8(2):88–95. https://doi.org/10.1016/j.ajps.2013.07.011.

    Article  CAS  Google Scholar 

  5. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154(2):123–40. https://doi.org/10.1016/S0378-5173(97)00135-X.

    Article  CAS  Google Scholar 

  6. Yoshida H, Lehr C-M, Kok W, Junginger H, Verhoef J, Bouwstra J. Niosomes for oral delivery of peptide drugs. J Control Release. 1992;21(1–3):145–53. https://doi.org/10.1016/0168-3659(92)90016-K.

    Article  CAS  Google Scholar 

  7. Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomedicine. 2015;10:4797-813.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Khan MI, Madni A, Ahmad S, Mahmood MA, Rehman M, Ashfaq M. Formulation design and characterization of a non-ionic surfactant based vesicular system for the sustained delivery of a new chondroprotective agent. Braz J Pharm Sci. 2015;51(3):607–15. https://doi.org/10.1590/S1984-82502015000300012.

    Article  Google Scholar 

  9. Khan MI, Madni A, Peltonen L. Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. Eur J Pharm Sci. 2016;95:88–95.

    Article  CAS  PubMed  Google Scholar 

  10. Madni A, Sarfraz M, Rehman M, Ahmad M, Akhtar N, Ahmad S, et al. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci. 2014;17(3):401–26. https://doi.org/10.18433/J3CP55.

    Article  PubMed  Google Scholar 

  11. Eleje GU, Egeonu RO, Obianika C, Innocent I, JEO M, Osuagwu I, et al. Diclofenac and pentazocine versus pentazocine alone for post-operative analgesia in cesarean section. Int J Med Health Dev. 2015;20(2):381-400

  12. Nersesyan H, Slavin KV. Current aproach to cancer pain management: availability and implications of different treatment options. Ther Clin Risk Manag. 2007;3(3):381.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Prasad Verma P, Chandak A. Development of matrix controlled transdermal delivery systems of pentazocine: in vitro/in vivo performance. Acta Pharma. 2009;59(2):171–86.

    Article  Google Scholar 

  14. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1):233–42. https://doi.org/10.1016/j.ijpharm.2007.11.037.

    Article  CAS  PubMed  Google Scholar 

  15. De Conno F, Ripamonti C, Sbanotto A, Barletta L, Zecca E, Martini C, et al. A clinical study on the use of codeine, oxycodone, dextropropoxyphene, buprenorphine, and pentazocine in cancer pain. J Pain Symptom Manag. 1991;6(7):423–7. https://doi.org/10.1016/0885-3924(91)90040-B.

    Article  Google Scholar 

  16. Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 1999;185(1):23–35. https://doi.org/10.1016/S0378-5173(99)00122-2.

    Article  CAS  PubMed  Google Scholar 

  17. Blazek-Welsh AI, Rhodes DG. Maltodextrin-based proniosomes. Aaps Pharmsci. 2001;3(1):1–8. https://doi.org/10.1208/ps030101.

    Article  PubMed Central  Google Scholar 

  18. Rama K, Senapati P, Das M. Formulation and in vitro evaluation of ethyl cellulose microspheres containing zidovudine. J Microencapsul. 2005;22(8):863–76. https://doi.org/10.1080/02652040500273498.

    Article  CAS  Google Scholar 

  19. Bansal S, Aggarwal G, Chandel P, Harikumar S. Design and development of cefdinir niosomes for oral delivery. J Pharm Bioallied Sci. 2013;5(4):318–25. https://doi.org/10.4103/0975-7406.120080.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blazek-Welsh AI, Rhodes DG. SEM imaging predicts quality of niosomes from maltodextrin-based proniosomes. Pharm Res. 2001;18(5):656–61. https://doi.org/10.1023/A:1011037527889.

    Article  CAS  PubMed  Google Scholar 

  21. Wilkhu JS, Ouyang D, Kirchmeier MJ, Anderson DE, Perrie Y. Investigating the role of cholesterol in the formation of non-ionic surfactant based bilayer vesicles: thermal analysis and molecular dynamics. Int J Pharm. 2014;461(1):331–41. https://doi.org/10.1016/j.ijpharm.2013.11.063.

    Article  CAS  PubMed  Google Scholar 

  22. Ingham B. X-ray scattering characterisation of nanoparticles. Crystallogr Rev. 2015;21(4):229–303. https://doi.org/10.1080/0889311X.2015.1024114.

    Article  Google Scholar 

  23. Gupta A, Prajapati SK, Singh M, Balamurugan M. Proniosomal powder of captopril: formulation and evaluation. Mol Pharm. 2007;4(4):596–9. https://doi.org/10.1021/mp0700110.

    Article  CAS  PubMed  Google Scholar 

  24. Abd-Elbary A, El-laithy HM, Tadros MI. Sucrose stearate-based proniosome-derived niosomes for the nebulisable delivery of cromolyn sodium. Int J Pharm. 2008;357(1–2):189–98. https://doi.org/10.1016/j.ijpharm.2008.01.056.

    Article  CAS  PubMed  Google Scholar 

  25. Abaee A, Madadlou A. Niosome-loaded cold-set whey protein hydrogels. Food Chem. 2016;196:106–13. https://doi.org/10.1016/j.foodchem.2015.09.037.

    Article  CAS  PubMed  Google Scholar 

  26. Solanki AB, Parikh JR, Parikh RH. Preparation, optimization and characterization of ketoprofen proniosomes for transdermal delivery. Int J Pharm Sci Nanotechnol. 2009;2:413–20.

    Google Scholar 

  27. Chakraborti CK, Sahoo S, Behera PK. Effect of different polymers on in vitro and ex vivo permeability of ofloxacin from its mucoadhesive suspensions. Saudi Pharm J. 2015;23(2):195–201. https://doi.org/10.1016/j.jsps.2014.08.003.

    Article  PubMed  Google Scholar 

  28. Sezgin-Bayindir Z, Yuksel N. Investigation of formulation variables and excipient interaction on the production of niosomes. AAPS PharmSciTech. 2012;13(3):826–35. https://doi.org/10.1208/s12249-012-9805-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Zhang X, Wang X, Huang Y, Yang B, Pan X, et al. The influence of maltodextrin on the physicochemical properties and stabilization of beta-carotene emulsions. AAPS PharmSciTech. 2016;17(1):1–8. https://doi.org/10.1208/s12249-016-0486-2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jamil B, Habib H, Abbasi S, Nasir H, Rahman A, Rehman A, et al. Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydr Polym. 2016;136:682–91. https://doi.org/10.1016/j.carbpol.2015.09.078.

    Article  CAS  PubMed  Google Scholar 

  31. Cascone MG, Lazzeri L, Carmignani C, Zhu Z. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med. 2002;13(5):523–6.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. Am Assoc Pharm Sci. 2010;12(3):263–71.

    Google Scholar 

  33. Muzzalupo R. Niosomal drug delivery for transdermal targeting: recent advances. 2015;23-33.

  34. Solanki A, Parikh J, Parikh R. Preparation, characterization, optimization, and stability studies of Aceclofenac Proniosomes. Iranian J Pharm Res. 2010;7(4):237–46.

    Google Scholar 

  35. Akhilesh D, Faishal G, Kamath J. Comparative study of carriers used in proniosomes. Int J Pharma Chem Sci. 2012;1:164–73.

    Google Scholar 

  36. Solanki AB, Parikh JR, Parikh RH. Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level Box-Behnken design. AAPS PharmSciTech. 2007;8(4):43–9. https://doi.org/10.1208/pt0804086.

    Article  PubMed Central  Google Scholar 

  37. Gurrapu A, Jukanti R, Bobbala SR, Kanuganti S, Jeevana JB. Improved oral delivery of valsartan from maltodextrin based proniosome powders. Adv Powder Technol. 2012;23(5):583–90. https://doi.org/10.1016/j.apt.2011.06.005.

    Article  CAS  Google Scholar 

  38. Koynov S, Muzzio FJ, Glasser BJ. A novel consolidation method to measure powder flow properties using a small amount of material. AICHE J. 2016;62(12):4193–200. https://doi.org/10.1002/aic.15321.

    Article  CAS  Google Scholar 

  39. Wathoni N, Insani UC. Characterization and optimization of natural maltodextrin-based niosome. J Appl Pharm Sci. 2013;3(7):68-71.

    Google Scholar 

  40. Desai J, Alexander K, Riga A. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int J Pharm. 2006;308(1):115–23. https://doi.org/10.1016/j.ijpharm.2005.10.034.

    Article  CAS  PubMed  Google Scholar 

  41. Sengodan T, Sunil B, Vaishali R, Chandra RJ, Nagar S, Nagar O. Formulation and evaluation of maltodextrin based proniosomes loaded with indomethacin. Int J PharmTech Res. 2009;1(3):517–23.

    Google Scholar 

  42. Ravaghi M, Sinico C, Razavi SH, Mousavi SM, Pini E, Fadda AM. Proniosomal powders of natural canthaxanthin: preparation and characterization. Food Chem. 2017;220:233–41. https://doi.org/10.1016/j.foodchem.2016.09.162.

    Article  CAS  PubMed  Google Scholar 

  43. Khalil RM, Abdelbary GA, Basha M, Awad GE, El-Hashemy HA. Design and evaluation of proniosomes as a carrier for ocular delivery of lomefloxacin HCl. J Liposome Res. 2016:1–12.

  44. Sezgin-Bayindir Z, Antep MN, Yuksel N. Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. AAPS PharmSciTech. 2015;16(1):108–17. https://doi.org/10.1208/s12249-014-0213-9.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson SM. The effect of charge and cholesterol on the size and thickness of sonicated phospholipid vesicles. Biochim Biophys Acta Biomembr. 1973;307(1):27–41. https://doi.org/10.1016/0005-2736(73)90022-9.

    Article  CAS  Google Scholar 

  46. Sahoo RK, Biswas N, Guha A, Sahoo N, Kuotsu K. Development and in vitro/in vivo evaluation of controlled release provesicles of a nateglinide–maltodextrin complex. Acta Pharm Sin B. 2014;4(5):408–16. https://doi.org/10.1016/j.apsb.2014.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(1-2):1–2):1-8. https://doi.org/10.1016/j.ijpharm.2009.04.020.

    Article  CAS  PubMed  Google Scholar 

  48. Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H. Release studies on ciprofloxacin loaded non-ionic surfactant vesicles. Avicenna J Med Biotechnol. 2015;7(2):69.

    PubMed  PubMed Central  Google Scholar 

  49. El-Alim SA, Kassem A, Basha M. Proniosomes as a novel drug carrier system for buccal delivery of benzocaine. J Drug Deliv Sci Technol. 2014;24(5):452–8. https://doi.org/10.1016/S1773-2247(14)50087-1.

    Article  Google Scholar 

  50. Shirsand S, Para M, Nagendrakumar D, Kanani K, Keerthy D. Formulation and evaluation of ketoconazole niosomal gel drug delivery system. Int J Pharm Investig. 2012;2(4):201–7. https://doi.org/10.4103/2230-973X.107002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asadullah Madni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madni, A., Rahim, M.A., Mahmood, M.A. et al. Enhancement of Dissolution and Skin Permeability of Pentazocine by Proniosomes and Niosomal Gel. AAPS PharmSciTech 19, 1544–1553 (2018). https://doi.org/10.1208/s12249-018-0967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0967-6

KEY WORDS

Navigation