Skip to main content
Log in

Development of Novel High Density Gastroretentive Multiparticulate Pulsatile Tablet of Clopidogrel Bisulfate Using Quality by Design Approach

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Myocardial infarction, i.e., heart attack, is a fatal condition which is on the increase all over the world. It is reported that a large number of heart attack occur in morning hours which are attributable to platelet aggregation. Chronotherapy at this stage can be crucial. Clopidogrel bisulfate (CLB) is an antiplatelet agent and has become a drug of choice for prevention of heart attack. It is soluble in acidic pH and has a narrow absorption window. So, its long residence time in stomach is desirable. Therefore, a novel high density tablet was developed comprising multiparticulate pellets with pulsatile release necessary to maintain chronotherapy of heart attack. The pellets were prepared by extrusion-spheronization and coated in fluidized bed processor with different coating material to achieve pulsatile release. The size, shape of pellets, and drug release were evaluated. High density tablet containing coated pellets was formulated and evaluated for retention in stomach. Quality by design tools was used to design and optimize the processes. Timed release observed by dissolution study showed lag time of 6 h followed by burst release of drug up to 94% in 1 h. Density of tablets was found to be 2.2 g cm−3 which is more than gastric fluid. In vivo x-ray studies in rabbit revealed 8 h of gastric retention of tablet at the bottom of the stomach. Thus, CLB high density pulsatile system looks to open up a window of opportunity for developing formulations with drugs that are stable in gastric region and needed chronotheraupetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kozinski M, Bielis L, Wisniewska-Szmyt J, Boinska J, Stolarek W, Marciniak A, Kubica A, Grabczewska Z, Navarese EP, Andreotti F, Siller-Matula JM. Diurnal variation in platelet inhibition by clopidogrel. Platelets. 2011;22(8):579–87.

    Article  CAS  PubMed  Google Scholar 

  2. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med. 1987;316(24):1514–8.

    Article  CAS  PubMed  Google Scholar 

  3. Diener HC, Bogousslavsky J, Brass LM, Cimminiello C, Csiba L, Kaste M, Leys D, Matias-Guiu J, Rupprecht HJ. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet. 2004;364(9431):331–7.

    Article  CAS  PubMed  Google Scholar 

  4. Tantry US, Kereiakes DJ, Gurbel PA. Clopidogrel and proton pump inhibitors: influence of pharmacological interactions on clinical outcomes and mechanistic explanations. J Am Coll Cardiol Intv. 2011;4(4):365–80.

    Article  Google Scholar 

  5. Khan Z, Pillay V, Choonara YE, du Toit LC. Drug delivery technologies for chronotherapeutic applications. Pharm Dev Technol. 2009;14(6):602–12.

    Article  CAS  PubMed  Google Scholar 

  6. Waterman KC. A critical review of gastric retentive controlled drug delivery. Pharm Dev Technol. 2007;12(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  7. Ranjan OP, Nayak UY, Reddy MS, Dengale SJ, Musmade PB, Udupa N. Osmotically controlled pulsatile release capsule of montelukast sodium for chronotherapy: statistical optimization, in vitro and in vivo evaluation. Drug Deliv. 2014;21(7):509–18.

    Article  CAS  PubMed  Google Scholar 

  8. Shah S, Patel R, Soniwala M, Chavda J. Development and optimization of press coated tablets of release engineered valsartan for pulsatile delivery. Drug Dev Ind Pharm. 2015;41(11):1835–46.

    Article  CAS  PubMed  Google Scholar 

  9. Macchi E, Zema L, Maroni A, Gazzaniga A, Felton LA. Enteric-coating of pulsatile-release HPC capsules prepared by injection molding. Eur J Pharm Sci. 2015;70:1–11.

    Article  CAS  PubMed  Google Scholar 

  10. Kadam VD, Gattani SG. Development of colon targeted multiparticulate pulsatile drug delivery system for treating nocturnal asthma. Drug Deliv. 2010;17(5):343–51.

    Article  CAS  PubMed  Google Scholar 

  11. Roy P, Shahiwala A. Multiparticulate formulation approach to pulsatile drug delivery: current perspectives. J Control Release. 2009;134(2):74–80.

    Article  CAS  PubMed  Google Scholar 

  12. Reynolds AD. A new technique for production of spherical particles. Manuf Chem. 1970;41(6):40.

    Google Scholar 

  13. Abdalla A, Mäder K. Preparation and characterization of a self-emulsifying pellet formulation. Eur J Pharm Biopharm. 2007;66(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  14. Sangkuhl K, Klein TE, Altman RB. Clopidogrel pathway. Pharmacogenet Genomics. 2010;20(7):463–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Badve SS, Sher P, Korde A, Pawar AP. Development of hollow/porous calcium pectinate beads for floating-pulsatile drug delivery. Eur J Pharm Biopharm. 2007;65(1):85–93.

    Article  CAS  PubMed  Google Scholar 

  16. Bansal S, Beg S, Asthana A, Garg B, Asthana GS, Kapil R, Singh B. QbD-enabled systematic development of gastroretentive multiple-unit microballoons of itopride hydrochloride. Drug Deliv. 2016;23(2):437–51.

    Article  CAS  PubMed  Google Scholar 

  17. Arza RA, Gonugunta CS, Veerareddy PR. Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. AAPS PharmSciTech. 2009;10(1):220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Desai N, Purohit R. Design and development of clopidogrel bisulfate gastroretentive osmotic formulation using quality by design tools. AAPS PharmSciTech. 2017;28:1–13.

    Google Scholar 

  19. Clarke GM, Newton JM, Short MD. Gastrointestinal transit of pellets of differing size and density. Int J Pharm. 1993;100(1–3):81–92.

    Article  CAS  Google Scholar 

  20. Kan S, Lu J, Liu J, Wang J, Zhao Y. A quality by design (QbD) case study on enteric-coated pellets: screening of critical variables and establishment of design space at laboratory scale. Asian J Pharm Sci. 2014;9(5):268–78.

    Article  Google Scholar 

  21. Wang J, Kan S, Chen T, Liu J. Application of quality by design (QbD) to formulation and processing of naproxen pellets by extrusion–spheronization. Pharm Dev Technol. 2015;20(2):246–56.

    Article  CAS  PubMed  Google Scholar 

  22. Bansal S, Beg S, Garg B, Asthana A, Asthana GS, Singh B. QbD-oriented development and characterization of effervescent floating-bioadhesive tablets of cefuroxime axetil. AAPS PharmSciTech. 2016;17(5):1086–99.

    Article  CAS  PubMed  Google Scholar 

  23. Charoo NA, Shamsher AA, Zidan AS, Rahman Z. Quality by design approach for formulation development: a case study of dispersible tablets. Int J Pharm. 2012;423(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  24. Fahmy R, Kona R, Dandu R, Xie W, Claycamp G, Hoag SW. Quality by design I: application of failure mode effect analysis (FMEA) and Plackett–Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets. AAPS PharmSciTech. 2012;13(4):1243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vora C, Patadia R, Mittal K, Mashru R. Risk based approach for design and optimization of stomach specific delivery of rifampicin. Int J Pharm. 2013;455(1):169–81.

    Article  CAS  PubMed  Google Scholar 

  26. Wikipedia contributors, “Capsule (geometry),” Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Capsule_(geometry)&oldid=717568487 (accessed April 8, 2017).

  27. Yadav D, Survase S, Kumar N. Dual coating of swellable and rupturable polymers on glipizide loaded MCC pellets for pulsatile delivery: formulation design and in vitro evaluation. Int J Pharm. 2011;419(1):121–30.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Yang J, Qian Y, Yang M, Qiu Y, Huang W, Shan L, Gao C. Novel ethylcellulose-coated pellets for controlled release of metoprolol succinate without lag phase: characterization, optimization and in vivo evaluation. Drug Dev Ind Pharm. 2015;41(7):1120–9.

    Article  CAS  PubMed  Google Scholar 

  29. Vertomrnen J, Kinget R. The influence of five selected processing and formulation variables on the particle size, particle size distribution, and friability of pellets produced in a rotary processor. Drug Dev Ind Pharm. 1997;23(1):39–46.

    Article  Google Scholar 

  30. Pund S, Joshi A, Vasu K, Nivsarkar M, Shishoo C. Multivariate optimization of formulation and process variables influencing physico-mechanical characteristics of site-specific release isoniazid pellets. Int J Pharm. 2010;388(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  31. Guan J, Zhou L, Nie S, Yan T, Tang X, Pan W. A novel gastric-resident osmotic pump tablet: in vitro and in vivo evaluation. Int J Pharm. 2010;383(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  32. Dukić A, Mens R, Adriaensens P, Foreman P, Gelan J, Remon JP, Vervaet C. Development of starch-based pellets via extrusion/spheronisation. Eur J Pharm Biopharm. 2007;66(1):83–94.

    Article  PubMed  Google Scholar 

  33. Tomer G, Podczeck F, Newton JM. The influence of type and quantity of model drug on the extrusion/spheronization of mixtures with microcrystalline cellulose: I. Extrusion parameters. Int J Pharm. 2001;217(1):237–48.

    Article  CAS  PubMed  Google Scholar 

  34. Steckel H, Mindermann-Nogly F. Production of chitosan pellets by extrusion/spheronization. Eur J Pharm Biopharm. 2004;57(1):107–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Nilesh Desai is thankful to University Grants Commission, India, for financial assistance to the work in the form of UGC-BSR Project file no. 7-23/2007(BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Purohit.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, N., Purohit, R. Development of Novel High Density Gastroretentive Multiparticulate Pulsatile Tablet of Clopidogrel Bisulfate Using Quality by Design Approach. AAPS PharmSciTech 18, 3208–3218 (2017). https://doi.org/10.1208/s12249-017-0805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0805-2

KEY WORDS

Navigation