Skip to main content

Advertisement

Log in

Hydroxyurea-Lactose Interaction Study: In Silico and In Vitro Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The Maillard reaction between hydroxyurea (a primary amine-containing drug) and lactose (used as an excipient) was explored. The adduct of these compounds was synthesized by heating hydroxyurea with lactose monohydrate at 60 °C in borate buffer (pH 9.2) for 12 h. Synthesis of the adduct was confirmed using UV–visible spectroscopy and Fourier transform infrared, differential scanning calorimetry, high-pressure liquid chromatography, and liquid chromatography-mass spectrometry studies. An in silico investigation of how the adduct formation affected the interactions of hydroxyurea with its biological target oxyhemoglobin, to which it binds to generate nitric oxide and regulates fetal hemoglobin synthesis, was carried out. The in silico evaluations were complemented by an in vitro assay of the anti-sickling activity. Co-incubation of hydroxyurea with deoxygenated blood samples reduced the percentage of sickled cells from 38% to 12 ± 1.6%, whereas the percentage of sickled cells in samples treated with the adduct was 17 ± 1.2%. This indicated loss of anti-sickling activity in the case of the adduct. This study confirmed that hydroxyurea can participate in a Maillard reaction if lactose is used as a diluent. Although an extended study at environmentally feasible temperatures was not carried out in the present investigation, the partial loss of the anti-sickling activity of hydroxyurea was investigated along with the in silico drug–target interactions. The results indicated that the use of lactose in hydroxyurea formulations needs urgent reconsideration and that lactose must be replaced by other diluents that do not form Maillard adducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad MZ, Vijay K, Atul K, Sohail A. Drug-excipient (s) interactions and compatibility study: a review. J Pharm Res. 2010;3(9):2092.

    Google Scholar 

  2. Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug–excipient compatibility testing. J Pharmaceut Biomed. 2005;38(4):633–44.

    Article  CAS  Google Scholar 

  3. Bruni G, Berbenni V, Milanese C, Girella A, Marini A. Drug-excipient compatibility studies in binary and ternary mixtures by physico-chemical techniques. J Thermal Anal and Calorim. 2010;102(1):193–201.

    Article  CAS  Google Scholar 

  4. Narang AS, Boddu SH. Excipient applications in formulation design and drug delivery. New York: Springer; 2015. p. 1–10.

    Book  Google Scholar 

  5. Botha S, Lötter A. Compatibility study between oxprenolol hydrochloride and tablet excipients using differential scanning calorimetry. Drug Dev Ind Pharm. 1989;15(11):1843–53.

    Article  CAS  Google Scholar 

  6. Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson TA, et al. Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets. Eur J Pharm Biopharm. 2009;73(3):404–13.

    Article  CAS  PubMed  Google Scholar 

  7. El-Shattawy HH. Nalidixic acid-direct compression excipients, preformulation stability screening using differential scanning calorimetry. Drug Dev Ind Pharm. 1984;10(3):491–504.

    Article  CAS  Google Scholar 

  8. Patil DD, Patil CR. Modification of pharmacological activity of nebivolol due to Maillard reaction. Pharm Dev Technol. 2013;18(4):844–51.

    Article  CAS  PubMed  Google Scholar 

  9. Van Kamp H, Bolhuis G, Kussendrager K, Lerk C. Studies on tableting properties of lactose. IV. Dissolution and disintegration properties of different types of crystalline lactose. Int J Pharm. 1986;28(2):229–38.

    Article  CAS  Google Scholar 

  10. Guo J. Lactose in pharmaceutical applications. Drug Del Te chnol. 2004;4.

  11. Agrawal S, Singh I, Kaur KJ, Bhade SR, Kaul CL, Panchagnula R. Comparative bioavailability of rifampicin, isoniazid and pyrazinamide from a four drug fixed dose combination with separate formulations at the same dose levels. Int J Pharm. 2004;276(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ghaderi F, Nemati M, Siahi-Shadbad MR, Valizadeh H, Monajjemzadeh F. Physicochemical evaluation and non-isothermal kinetic study of the drug–excipient interaction between doxepin and lactose. Powder Technol. 2015;286:845–55.

    Article  CAS  Google Scholar 

  13. Cotton M, Wu D, Vadas E. Drug-excipient interaction study of enalapril maleate using thermal analysis and scanning electron microscopy. Int J Pharm. 1987;40(1–2):129–42.

    Article  CAS  Google Scholar 

  14. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, et al. Food chemistry: acrylamide from Maillard reaction products. Nature. 2002;419(6906):449–50.

    Article  CAS  PubMed  Google Scholar 

  15. Serajuddin A, Thakur AB, Ghoshal RN, Fakes MG, Ranadive SA, Morris KR, et al. Selection of solid dosage form composition through drug–excipient compatibility testing. J Pharm Sci. 1999;88(7):696–704.

    Article  CAS  PubMed  Google Scholar 

  16. Ballas SK. Sickle cell anaemia. Drugs. 2002;62(8):1143–72.

    Article  CAS  PubMed  Google Scholar 

  17. Lebensburger JD, Pestina TI, Ware RE, Boyd KL, Persons DA. Hydroxyurea therapy requires HbF induction for clinical benefit in a sickle cell mouse model. Haematologica. 2010;95(9):1599–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson TA, et al. Detection of gabapentin-lactose Maillard reaction product (Schiff’s base): application to solid dosage form preformulation. Part 1. Pharmind: Die Pharmazeutische Industrie. 2011;73(1):174–7.

    CAS  Google Scholar 

  19. Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson T, et al. Assessment of feasibility of Maillard reaction between baclofen and lactose by liquid chromatography and tandem mass spectrometry, application to pre formulation studies. AAPS PharmSciTech. 2009;10(2):649–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez A, Beukens D, Debouge N, Gulbis B, Cotton F. Development and validation of a liquid chromatography method with electrochemical detection for hydroxyurea quantification in human plasma and aqueous solutions. Journal of Chromatography & Separation Techniques. 2014;5:5.

    Article  Google Scholar 

  21. Shen S-C, Tseng K-C, Wu JS-B. An analysis of Maillard reaction products in ethanolic glucose–glycine solution. Food Chem. 2007;102(1):281–7.

    Article  CAS  Google Scholar 

  22. Vankayala SL, Hargis JC, Woodcock HL. Unlocking the binding and reaction mechanism of hydroxyurea substrates as biological nitric oxide donors. J Chem Inf Model. 2012;52(5):1288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oyewole O, Malomo S, Adebayo J. Comparative studies on antisickling properties of thiocyanate, tellurite and hydroxyurea. Pak J Med Sci. 2008;24(1):18.

    Google Scholar 

  24. Iyamu EW, Turner EA, Asakura T. In vitro effects of NIPRISAN (Nix-0699): a naturally occurring, potent antisickling agent. Brit J Haematol. 2002;118(1):337–43.

    Article  CAS  Google Scholar 

  25. Iyamu E, Roa P, Kopsombut P, Aguinaga M, Turner E. New isocratic high-performance liquid chromatographic procedure to assay the anti-sickling compound hydroxyurea in plasma with ultraviolet detection. J Chromatogr B. 1998;709(1):119–26.

    Article  CAS  Google Scholar 

  26. Ackermann L. Modern arylation methods. Hob oken: Wiley Online Library; 2009.

    Book  Google Scholar 

  27. Macedo R. Gomes do Nascimento T, Veras J. Compatibility and stability studies of propranolol hydrochloride binary mixtures and tablets for TG and DSC-photovisual. J Therm Anal Calorim. 2002;67(2):483–9.

    Article  CAS  Google Scholar 

  28. Wirth DD, Baertschi SW, Johnson RA, Maple SR, Miller MS, Hallenbeck DK, et al. Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine. J Pharm Sci. 1998;87(1):31–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors are thankful to Neon Laboratories Ltd., Mumbai for providing the hydroxyurea sample required for this study as a gift. The authors are thankful to the Indian Institute of Technology Bombay for providing the LC-MS facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunal B. Bachchhao or Dipak D Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachchhao, K.B., Patil, R.R., Patil, C.R. et al. Hydroxyurea-Lactose Interaction Study: In Silico and In Vitro Evaluation. AAPS PharmSciTech 18, 3034–3041 (2017). https://doi.org/10.1208/s12249-017-0791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0791-4

KEY WORDS

Navigation