Skip to main content

Advertisement

Log in

A Novel Topical Targeting System of Caffeine Microemulsion for Inhibiting UVB-Induced Skin Tumor: Characterization, Optimization, and Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of the present study was to develop an optimal microemulsion (ME) formulation as topical nanocarrier of caffeine (CAF) to enhance CAF skin retention and subsequently improve its therapeutic effect on UVB-induced skin carcinogenesis. The pseudo-ternary phase diagram was developed composing of Labrafil M 1944 CS as oil phase, Cremophor EL as surfactant, tetraglycol as cosurfactant, and water. Four ME formulations at water content of 50, 60, 70, and 80% were prepared along the water dilution line of oil to surfactant ratio of 1:3 and characterized in terms of morphology, droplet size, and electric conductivity. A gel at the same drug loads (1%, w/w) was used as control. Ex vivo skin permeation studies were conducted for ME optimization. The optimized formulation (ME4) was composed of 5% (w/w) Labrafil M 1944 CS, 15% (w/w) Smix (2/1, Cremophor EL and tetraglycol), and 80% (w/w) aqueous phase. The skin location amount of CAF from ME4 was nearly 3-fold higher than control (P < 0.05) with improved permeated amount through the skin. The skin targeting localization of hydrophilic substance from ME4 was further visualized through fluorescent-labeled ME by a confocal laser scanning microscope. In pharmacodynamics studies, CAF-loaded ME4 was superior in terms of increasing apoptotic sunburn cells (P < 0.05) as compared with control. Overall results suggested that the ME4 might be a promising vehicle for the topical delivery of CAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hussein MR. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol. 2005;32(3):191–205.

    Article  PubMed  Google Scholar 

  2. Heffernan TP, Kawasumi M, Blasina A, Anderes K, Conney AH, Nghiem P. ATR–Chk1 pathway inhibition promotes apoptosis after UV treatment in primary human keratinocytes: potential basis for the UV protective effects of caffeine. J Invest Dermatol. 2009;129(7):1805–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kawasumi M, Lemos B, Bradner JE, Thibodeau R, Kim YS, Schmidt M, et al. Protection from UV-induced skin carcinogenesis by genetic inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase. Proc Natl Acad Sci U S A. 2011;108(33):13716–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ghosh AK, Ghosh C, Gupta A. A simple approach to detect caffeine in tea beverages. J Agric Food Chem. 2013;61(16):3814–20.

    Article  CAS  PubMed  Google Scholar 

  5. Abel EL, Hendrix SO, McNeeleya SG, Johnson KC, Rosenberg CA, Mossavar-Rahmani Y, et al. Daily coffee consumption and prevalence of nonmelanoma skin cancer in Caucasian women. Eur J Cancer Prev. 2007;16(61):446–52.

    Article  PubMed  Google Scholar 

  6. Conney AH, Lu YP, Lou YR, Kawasumi M, Nghiem P. Mechanisms of caffeine-induced inhibition of UVB carcinogenesis. Front Oncol. 2013;3(144):1–11.

    Google Scholar 

  7. Lu YP, Lou YR, Peng QY, Xie JG, Nghiem P, Conney AH. Effect of caffeine on the ATR/Chk1 pathway in the epidermis of UVB-irradiated mice. Cancer Res. 2008;68(7):2523–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sintov AC, Greenberg I. Comparative percutaneous permeation study using caffeine-loaded microemulsion showing low reliability of the frozen/thawed skin models. Int J Pharm. 2014;471(1–2):516–24.

    Article  CAS  PubMed  Google Scholar 

  9. Lu YP, Lou YP, Xie JG, Peng QY, Liao J, Yang CS, et al. Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc Natl Acad Sci U S A. 2002;99(19):12455–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fouad SA, Basalious EB, El-Nabarawi MA, Tayel SA. Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: in vitro/in vivo evaluation. Int J Pharm. 2013;453(2):569–78.

    Article  CAS  PubMed  Google Scholar 

  11. Ge SM, Lin YY, Lu HY, Li Q, He J, Chen B, et al. Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int J Pharm. 2014;465(1–2):120–31.

    Article  CAS  PubMed  Google Scholar 

  12. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64(S):175–93.

    Article  Google Scholar 

  13. Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo—part II: rheological characterization and in vivo assessment through dermatopharmacokinetic and pilot clinical studies. Colloid Surf B. 2014;119:145–53.

    Article  CAS  Google Scholar 

  14. Aggarwal N, Goindi S, Khurana R. Formulation, characterization and evaluation of an optimized microemulsion formulation of griseofulvin for topical application. Colloid Surf B. 2013;105:158–66.

    Article  CAS  Google Scholar 

  15. Baboota S, Al-Azaki A, Kohli K, Ali J, Dixit N, Shakeel F. Development and evaluation of a microemulsion formulation for transdermal delivery of terbinafine. PDA J Pharm Sci Technol. 2007;61(4):276–85.

    CAS  PubMed  Google Scholar 

  16. Elshafeey AH, Kamel AO, Fathallah MM. Utility of nanosized microemulsion for transdermal delivery of tolterodine tartrate: ex-vivo permeation and in-vivo pharmacokinetic studies. Pharm Res. 2009;26(11):2446–53.

    Article  CAS  PubMed  Google Scholar 

  17. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54(1):S77–98.

    Article  CAS  PubMed  Google Scholar 

  18. Ling Y, Yu M, Guo F, Li N, Tan FP. Synergistic effect of mixed cosurfactants on transdermal delivery of indomethacin from O/W microemulsion. Chem Res Chin Univ. 2013;29(2):338–43.

    Article  CAS  Google Scholar 

  19. Sintov AC, Levy HV, Botner S. Systemic delivery of insulin via the nasal route using a new microemulsion system: in vitro and in vivo studies. J Control Release. 2010;148(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  20. Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloid Surf B. 2010;75(1):356–62.

    Article  CAS  Google Scholar 

  21. Rossetti FC, Lopes LB, Carollo ARH, Thomazini JA, Tedesco AC, Bentley MVLB. A delivery system to avoid self-aggregation and to improve in vitro and in vivo skin delivery of a phthalocyanine derivative used in the photodynamic therapy. J Control Release. 2011;155(3):400–8.

    Article  CAS  PubMed  Google Scholar 

  22. Yu M, Ma HX, Lei MZ, Li N, Tan FP. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur J Pharm Biopharm. 2014;88(1):92–103.

    Article  CAS  PubMed  Google Scholar 

  23. Küchler S, Abdel-Mottaleb M, Lamprecht A, Radowski AR, Haag R, Schäfer-Korting M. Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int J Pharm. 2009;377:169–72.

    Article  PubMed  Google Scholar 

  24. Koo SW, Hirakawa S, Fujii S, Kawasumi M, Nghiemt P. Protection from photodamage by topical application of caffeine after ultraviolet irradiation. Br J Dermatol. 2007;156(5):957–64.

    Article  CAS  PubMed  Google Scholar 

  25. Lu YP, Lou YR, Peng QY, Xie JG, Conney AH. Stimulatory effect of topical application of caffeine on UVB-induced apoptosis in the epidermis of p53 and Bax knockout mice. Cancer Res. 2004;64(14):5020–7.

    Article  CAS  PubMed  Google Scholar 

  26. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127(7):1701–12.

    CAS  PubMed  Google Scholar 

  27. Sahoo S, Pani NR, Sahoo SK. Microemulsion based topical hydrogel of sertaconazole: formulation, characterization and evaluation. Colloid Surf B. 2014;120:193–9.

    Article  CAS  Google Scholar 

  28. Zhang J, Michniak-Kohn B. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine. Int J Pharm. 2011;421(1):34–44.

    Article  CAS  PubMed  Google Scholar 

  29. Chen HB, Chang XL, Weng T, Zhao XZ, Gao ZH, Yang YJ, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98(3):427–36.

    Article  CAS  PubMed  Google Scholar 

  30. Naoui W, Bolzinger M-A, Fenet B, Pelletier J, Valour J-P, Kalfat R, et al. Microemulsion microstructure influences the skin delivery of an hydrophilic drug. Pharm Res. 2011;28(7):1683–95.

    Article  CAS  PubMed  Google Scholar 

  31. Chaiyana W, Rades T, Okonogi S. Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata. Int J Pharm. 2013;452(1–2):201–10.

    Article  CAS  PubMed  Google Scholar 

  32. Barbero AM, Frederick Frasch H. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol In Vitro. 2009;23(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  33. Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Basic Research Project (2014CB932200) of the MOST for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengping Tan or Nan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Yu, M., Lei, M. et al. A Novel Topical Targeting System of Caffeine Microemulsion for Inhibiting UVB-Induced Skin Tumor: Characterization, Optimization, and Evaluation. AAPS PharmSciTech 16, 905–913 (2015). https://doi.org/10.1208/s12249-014-0278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0278-5

KEY WORDS

Navigation