Skip to main content

Advertisement

Log in

Tyloxapol Niosomes as Prospective Drug Delivery Module for Antiretroviral Drug Nevirapine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

With the aim of assuring more patient compliant pharmacotherapy for acquired immuno deficiency syndrome, a formulation of the first line anti-retroviral drug, nevirapine (NVP), has been developed by encapsulating it within niosomes. Biocompatible niosomes were fabricated using a biological surfactant, tyloxapol, with variable cholesterol concentrations. Formulation with surfactant/cholesterol molar ratio 1:0.1 exhibits maximum stability and optimum hydrophobicity. Thus, it is most suitable for the entrapment of NVP and has high entrapment efficiency of 94.3%. FTIR and DSC results indicate that NVP has sufficient compatibility with the excipients of the formulation. Photoluminescence quenching measurements were employed to elucidate the position of drug molecules in niosome bilayer along with the partition coefficient. Dissolution results indicate that the efflux of drug is sustained which creates a depot effect and decreases the fluctuations in drug release. Such a versatile and improved formulation of NVP is expected to increase its therapeutic index and alleviate toxic systemic side effects while improving the quality of life and duration of survival of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin JH. Role of pharmacokinetics in the discovery and development of indinavir. Adv Drug Deliv Rev. 1999;39:33–49.

    Article  CAS  PubMed  Google Scholar 

  2. Shah CA. Adherence to high activity antiretroviral therapy (HAART) in pediatric patients infected with HIV: issues and intervention in India. Pediatrics. 2007;74:55–60.

    Google Scholar 

  3. Merluzzi VJ, Hargrave KD, Labadia M, Grozinger K, Skoog M, Wu JC, et al. Inhibition of HIV-1 replication by a non-nucleoside reverse transcriptase inhibitor. Science. 1990;250:1411–3.

    Article  CAS  PubMed  Google Scholar 

  4. Larder BA. Interactions between drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. J Gen Virol. 1994;75:951–7.

    Article  CAS  PubMed  Google Scholar 

  5. Balzarini J, Pelemans H, Karlsson A, DeClercq E, Kleim J-P. Concomitant combination therapy for HIV infection preferable over sequential therapy with 3TC and non-nucleoside reverse transcriptase inhibitors. Proc Natl Acad Sci U S A. 1996;93:13152–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kontorinis N, Dieterich D. Hepatotoxicity of antiretroviral therapy. AIDS Rev. 2003;5:36–43.

    PubMed  Google Scholar 

  7. Hawi A, Bell G. Preformulation studies of nevirapine, a reverse transcriptase inhibitor. Pharm Res. 1994;11(Suppl):36.

    Google Scholar 

  8. Lamson MJ, Sabo JP, Macgregor TR, Pav TW, Rowland L, Hawi A. Single dose pharmacokinetics and bioavailability of nevirapine in healthy volunteers. Biopharm Drug Dispos. 1995;20:285–91.

    Article  Google Scholar 

  9. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 1995;1:85–96.

    Article  Google Scholar 

  10. Ristsehel WA. Microemulsions for improved peptide absorption from the gastrointestinal tract. Methods Find Exp Clin Pharmacol. 1991;13:205–20.

    Google Scholar 

  11. Gabizon A, Goren D, Cohen R, Barenholz Y. Development of liposomal anthracyclines: from basics to clinical applications. J Control Release. 1998;53:275–9.

    Article  CAS  PubMed  Google Scholar 

  12. Navalakhe RM, Nandedkar TD. Application of nanotechnology in biomedicine. Indian J Exp Biol. 2007;45:160–5.

    CAS  PubMed  Google Scholar 

  13. Liu X, Huang G. Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian J Pharm Sci. 2013;8:319–28.

    Article  Google Scholar 

  14. Girigoswami A, Susmita D, Swati D. Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. Spectrochim Acta A. 2006;64:859–66.

    Article  Google Scholar 

  15. Marianecci C, Marzio LD, Rinaldi F, Celia C, Paolino D, Alhaique F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interf Sci. 2014;205:187–206.

    Article  CAS  Google Scholar 

  16. US Pharmacopeia, US Pharmacopeial Convention, Rockville, 22nd Revision (USP XXII), 1990, 1434.

  17. Kulshreshtha AK, Singh ON, Wall GM. Pharmaceutical suspensions: from formulation development to manufacturing. New York: Springer; 2010.

    Book  Google Scholar 

  18. Scott H. Comparing the surface chemical properties and the effect of salts on the cloud point of a conventional nonionic surfactant, octoxynol 9 (Triton X-100), and of its oligomer, tyloxapol (Triton WR-1339). J Colloid Interface Sci. 1998;205:496–502.

    Article  Google Scholar 

  19. Regev O, Zana R. Aggregation behavior of tyloxapol, a nonionic surfactant oligomer, in aqueous solution. J Colloid Interface Sci. 1999;210:8–17.

    Article  CAS  PubMed  Google Scholar 

  20. Westesen K. Phase diagram of tyloxapol and water—I. Int J Pharm. 1994;102:91–100.

    Article  CAS  Google Scholar 

  21. Westesen K, Koch MHJ. Phase diagram of tyloxapol and water—II. Int J Pharm. 1994;103:225–36.

    Article  CAS  Google Scholar 

  22. Tainter ML, Nachod FC, Bird JG. Alevaire as a mucolytic agent. N Engl J Med. 1955;253:764–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hao Y, Zhao F, Li N, Yang Y, Li K. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm. 2002;244:73–80.

    Article  CAS  PubMed  Google Scholar 

  24. Vostrikov VV, Selishcheva AA, Sorokoumova GM, Shakina YN, Shvets VI, Savel’ev OY, et al. Distribution coefficient of rifabutin in liposome/water system as measured by different methods. Eur J Pharm Biopharm. 2008;68:400–5.

    Article  CAS  PubMed  Google Scholar 

  25. Kalynasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99:2039–44.

    Article  Google Scholar 

  26. Liu T, Guo R. Preparation of a highly stable niosome and its hydrotrope-solubilization action to drugs. Langmuir. 2005;21:11034–9.

    Article  CAS  PubMed  Google Scholar 

  27. Marangoni AG. Steady-state fluorescence polarization spectroscopy as a tool to determine microviscosity and structural order in food systems. Food Res Int. 1992;25:67–80.

    Article  CAS  Google Scholar 

  28. Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T, et al. Development and characterization of a novel Cremophor® EL free liposome based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm. 2005;59:177–87.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Sun X, Zhang ZR. An investigation on liver-targeting microemulsions of norcantharidin. Drug Deliv. 2005;12:289–95.

    Article  CAS  PubMed  Google Scholar 

  30. Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y, et al. A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules. 2006;39:6584–9.

    Article  CAS  Google Scholar 

  31. Washington C. Drug release from microdisperse systems: a critical review. Int J Pharm. 1990;58:1–12.

    Article  CAS  Google Scholar 

  32. Mehta SK, Jindal N. Formulation of tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Colloids Surf B: Biointerfaces. 2013;101:434–41.

    Article  CAS  PubMed  Google Scholar 

  33. van Hal DA, Bouwstra JA, van Rensen A, Jeremiasse E, de Vringer T, Junginger HE. Preparation and characterization of nonionic surfactant vesicles. J Colloid Interface Sci. 1996;178:263–73.

    Article  Google Scholar 

  34. EL-Samaligy MS, Afifi NN, Mahmoud EA. Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int J Pharm. 2006;308:140–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zerrin SB, Yuksel N. Investigation of formulation variables and excipient interaction on the production of niosomes. AAPS PharmSciTech. 2012;13:826–35.

    Article  Google Scholar 

  36. Gregoriadis G. Liposome technology. 2nd ed. Boca Raton: CRC Press; 1993.

    Google Scholar 

  37. Lurie E, Kaplun AP, Dubovskii PV, Shvets VI. Interaction of N-(2-hydroxybenzyl)-ω-amino carbonic acids, novel amphipathic fatty acid derivatives, with membrane: partition coefficients. Biochim Biophys Acta. 1995;1235:256–62.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

SKM and NJ are thankful to the Council of Scientific and Industrial Research, India (CSIR), for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mehta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S.K., Jindal, N. Tyloxapol Niosomes as Prospective Drug Delivery Module for Antiretroviral Drug Nevirapine. AAPS PharmSciTech 16, 67–75 (2015). https://doi.org/10.1208/s12249-014-0183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0183-y

KEY WORDS

Navigation