Skip to main content

Advertisement

Log in

Design, Characterization, and Evaluation of Meloxicam Gel Prepared by Suspension and Solution Polymerization Using Solubility Parameter as the Basis for Development

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Meloxicam gel was designed based on the matching of the solubility parameter (δ) of the drug with that of the polymer and subsequently with skin for improved dermal delivery of meloxicam. The δ of meloxicam (11.48 (cal/cm3)0.5) determined by solubility measurement was matched statistically to the solubility parameter of monomers, n-vinyl-2-pyrrolidone, polyvinyl alcohol (PVA), hydroxyl ethyl methacrylate, ethylene glycol methacrylate (EGMA) determined by intrinsic viscosity measurement. Consequently gels were formulated by polymerization in selected solvent blend of water/ethyl acetate (20:80) in which the drug showed maximum solubility. Thus, F1–F16 formulations designed were evaluated for physicochemical properties, textural analysis, and in vitro drug release. On the basis of optimum characteristics, F2 (PVA, δ = 16.96 (cal/cm3)0.5) and F8 (EGMA, δ = 18.35 (cal/cm3)0.5) formulated by suspension polymerization were selected and subjected to skin irritation and topical anti-inflammatory studies. The formulation F8 demonstrated significant (p < 0.05) of anti-inflammatory activity in comparison to marketed piroxicam gel and was free from irritation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brunton LL, Lazo Js, Parker KL. Goodman & Gilmans’s the pharmacological basis of therapeutics. 11th ed. NY: McGraw Hill Medical Publication Division; 2006.

    Google Scholar 

  2. Chang JS, Huang YB, Hou SS, Wang RJ, Wu PC, Tsai YH. Formulation optimization of meloxicam sodium gel using response surface methodology. Int J Pharm. 2007;339:48–54. doi:10.1016/j.ijpharm.2007.01.033.

    Article  Google Scholar 

  3. Chang JS, Tsai YH, Wu PC, Huang YB. The effect of mixed-solvent and terpenes on percutaneous absorption of meloxicam gel. Drug Dev Ind Pharm. 2007;33:984–9. doi:10.1080/03639040601150294.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Chen M, Li X, Huang Y, Liang W. A hybrid thermosensitive chitosan gel for sustained release of meloxicam. J Biomater Sci Poly Ed. 2008;19:1239–47.

    Article  CAS  Google Scholar 

  5. Tsai Y, Huang Y, Wu P, Chang J. In vitro evaluation of meloxicam permeation using response surface methodology. J Food Drug Anal. 2006;14:236–41.

    Google Scholar 

  6. Weiner ML, Kotkoskie LA. Excipient toxicity and safety. New York: Marcel Dekker; 2000.

    Google Scholar 

  7. Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm. 1997;148:1–21.

    Article  CAS  Google Scholar 

  8. Sloan KB. The use of solubility parameters of drug and vehicle to describe skin transport in topical drug delivery formulation. New York: Marcel Dekker; 2000.

    Google Scholar 

  9. Romero S, Escalera B, Bustamante P. Solubility behaviour of polymorphs I and II of mefenamic acid in solvent mixtures. Int J Pharm. 1999;178:193–202. doi:10.1016/j.ijpharm.2006.04.020.

    Article  CAS  PubMed  Google Scholar 

  10. Barra J, Pena MA, Bustamanate P. Proposition of group molar constants for sodium to calculate the partial solubility parameters of sodium salt using the van Krevelen group contribution method. Eur J Pharm Sci. 1999;10:153–61. doi:10.1016/S0928-0987(00)00061-0.

    Article  Google Scholar 

  11. Josyula VR, Karanth H. Studies on solubility parameter of amoxycillin trihydrate: influence on in vitro release and antibacterial activity. Ind J Pharm Sci. 2005;67:342–5.

    Google Scholar 

  12. Bustamante P, Lupion JN, Escalera B. A new method to determine the partial solubility parameters of polymers from intrinsic viscosity. Eur J Pharm Sci. 2004;24:229–37. doi:10.1016/S0378.5173 (99)00379-9.

    Article  Google Scholar 

  13. Sen M, Uzun C, Güven O. Controlled release of terbinafine hydrochloride from pH sensitive poly(acrylamide/maleic acid) gels. Int J Pharm. 2000;203:149–57. doi:10.1016/S0378-5173(01)00804-3.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Zhu W, Ding J. Preparation of thermo sensitive microgels via suspension polymerization using different temperature protocols. J Biomed Mater Res. 2005;75:342–9.

    Article  Google Scholar 

  15. Fang J, Hwang T, Leu Y. Effect of enhancer and retarders on percutaneous absorption of flurbiprofen from gels. Int J Pharm. 2003;250:313–25. doi:10.1016/S0378-5173(02)00540-9.

    Article  CAS  PubMed  Google Scholar 

  16. Pourjavadi A, Kurdtabar M, Mahdavinia GR, Hosseinzadeh H. Synthesis and super-swelling behaviour of novel protein based superabsorbent gel. Poly Bull. 2006;57:813–24. doi:10.1016/j.carbpol.2008.12.019.

    Article  CAS  Google Scholar 

  17. Singla AK, Pathak K. Topical anti-inflammatory effects of Euphorbia prostrata on carrageenan induced foot pad oedema in mice. J Ethnopharmacol. 1990;29:291–4.

    Article  CAS  PubMed  Google Scholar 

  18. Aulton ME. Pharmaceutics—the science of dosage form design. 2nd ed. New York: Churchill Livingstone; 2002.

    Google Scholar 

  19. Ghosh TK, Jasti BR. Theory and practice of contemporary pharmaceutics. Boca Raton: CRC; 2005.

    Google Scholar 

  20. Sen M, Guven O. Determination of solubility parameter of poly (N-vinyl 2-pyrrolidone/ethylene glycol dimethacrylate) gels by swelling measurement. J Polym Sci Part B: Poly Physics. 1997;36:213–9.

    Article  Google Scholar 

  21. Malkin AY, Kulichikin SG. Rheokinetics of free-radical polymerization. Polymer. 1985;25:778–84.

    Article  Google Scholar 

  22. Cioffi M, Ganzeveld KJ, Hoffmann AC, Janssen LPBM. A rheokinetic study of bulk free radical polymerization performed with a helical barrel rheometer. Polym Engg Sc. 2004;44:179–85.

    Article  CAS  Google Scholar 

  23. Peng HT, Mok M, Martineau L, Shek PN. Gel—elastomer composite biomaterials: 2. Effects of aging methacrylated gelatin solutions on the preparation and physical properties of interpenetrating polymer networks. J Mater Sci: Mater in Med. 2007;18:1025–35.

    Article  CAS  Google Scholar 

  24. Yosipovitch G, Hu J. The importance of skin pH and aging. CWI Medical. 2003;11:88–93.

    Google Scholar 

  25. Elvira C, Mano JF, Roman JS, Resis RL. Starch based biodegradable gels with potential biomedical application as drug delivery systems. Biomaterials. 2002;23:1955–66. doi:10.1016/S0142-9612(01)00322-2.

    Article  CAS  PubMed  Google Scholar 

  26. Morita R, Honda R, Takahashi Y. Development of oral controlled release preparation, a swelling controlled release system (SCRS). II. In vitro and in vivo evaluation. J Control Rel. 2000;68:115–20. doi:10.1016/S0168-3659(00)00244-3.

    Article  CAS  Google Scholar 

  27. Isabel F, Alemeida M, Fernanda B. Evaluation of physical stability of two oleogels. Int J Pharm. 2006;327:73–7. doi:10.1016/j.ijpharm.2006.07.036.

    Article  Google Scholar 

  28. Du Toit LC, Pillay V, Danckwerts MP. Application of synergism and variation in ionic compatibilities within a hydrophilic polymeric sodium starch glycolate-kappa-carrageenan combination: textural profiling of the suspension behavior. J Bioact Compat Pol. 2006;21:107–22.

    Article  Google Scholar 

  29. Shastri D, Pandya H, Parikh RK, Patel CN. Smart gel in controlled drug delivery. Pharma Times. 2006;38:13–8.

    Google Scholar 

  30. Osborne DW, Amann HA. Topical drug delivery formulation. New York: Marcel Dekker; 2000.

    Google Scholar 

  31. Nugent MJD, Hanley A, Tomkins PT, Higginbotham CL. Investigation of a novel freeze–thaw process for the production of drug delivery gels. J Mat Sci. 2005;16:1149–58. doi:10.1002/app.27832.

    CAS  Google Scholar 

  32. Gowariker VR, Viswanatha NV, Sreedher J. Polymer science. New Delhi: New Age International; 2006.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Indian Institute of Technology, Roorkee for providing the facilities for SEM and DSC analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamla Pathak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, D., Pathak, K. Design, Characterization, and Evaluation of Meloxicam Gel Prepared by Suspension and Solution Polymerization Using Solubility Parameter as the Basis for Development. AAPS PharmSciTech 11, 133–142 (2010). https://doi.org/10.1208/s12249-009-9369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9369-0

Key words

Navigation