Skip to main content
Log in

Microemulsion System with Improved Loading of Piroxicam: A Study of Microstructure

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Formulation of a new oil-in-water (o/w) microemulsion composed of castor oil/Tween 80/ethanol/phosphate buffer for enhancing the loading capacity of an anti-inflammatory drug piroxicam has been accomplished. The pseudo-ternary phase diagram has been delineated at constant surfactant/cosurfactant ratio (1:2). The internal structure of so created four-component system was elucidated by means of an analysis of isotropic area magnitudes in the phase diagram. Conductivity (σ), kinematic viscosity (k η ), and surface tension (γ) studies with the variation in Φ w (weight fraction of aqueous phase) show the occurrence of structural changes from water-in-oil (w/o) microemulsion to oil-in-water (o/w). Along with the solubility and partition studies of piroxicam in microemulsion components, the changes in the microstructure of the microemulsion after incorporation of drug have been evaluated using pH, σ, γ, k η , and density studies. Piroxicam, a poorly water-soluble drug displayed high solubility (1.0%) in an optimum microemulsion formulation using ethanol (55.0%), Tween 80 (26.5%), castor oil (7.5%), and phosphate buffer (11.0%). The results have shown that the microemulsion remained stable after the incorporation of piroxicam. Fluorescence spectra analysis taking pyrene as fluorescent probe was performed, and the results showed that pyrene was completely solubilized in the oil phases of the bicontinuous microemulsions. The fluorescence spectrum of the model drug piroxicam was used to probe the intramicellar region of nonionic microemulsion. The results showed that the piroxicam was localized in the interfacial film of microemulsion systems more deeply in the palisade layer with ethanol as the cosurfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lopes LB, Scarpa MV, Pereira NL, De Oliveira LC, Oliveira AG. Interaction of sodium diclofenac with freeze-dried soya phosphatidylcholine and unilamellar liposomes. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences. 2006;42(4):497–504.

    CAS  Google Scholar 

  2. Park ES, Cui Y, Yun BJ, Ko IJ, Chi SC. Transdermal delivery of piroxicam using microemulsions. Arch Pharmacal Res. 2005;28(2):243–8.

    Article  CAS  Google Scholar 

  3. Yuan Y, Li SM, Mo FK, Zhong DF. Investigation of microemulsion system for transdermal delivery of meloxicam. Int J Pharm. 2006;321(1–2):117–23.

    Article  CAS  PubMed  Google Scholar 

  4. Sarciaux JM, Acar L, Sado PA. Using microemulsion formulations for oral drug delivery of therapeutic peptides. Int J Pharm. 1995;120(2):127–36.

    Article  CAS  Google Scholar 

  5. Ritschel WA. Methods and findings in experimental and clinical pharmacology. 1991;13(3):205–20

  6. Mehta SK, Kaur G, Bhasin KK. Analysis of Tween based microemulsion in the presence of TB drug rifampicin. Colloids Surf., B Biointerfaces. 2007;60(1):95–104.

    Article  CAS  Google Scholar 

  7. Sebastien H, Devin VM, Mark GA, Mark RP. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922–5.

    Article  Google Scholar 

  8. Sintov AC, Botner S. Transdermal drug delivery using microemulsion and aqueous systems: influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int J Pharm. 2006;311(1–2):55–62.

    Article  CAS  PubMed  Google Scholar 

  9. Spernath A, Aserin A. Microemulsions as carriers for drugs and nutraceuticals. Adv Colloid Interface Sci. 2006;128–130:47–64.

    Article  PubMed  Google Scholar 

  10. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.

    Article  CAS  PubMed  Google Scholar 

  11. López A, Llinares F, Cortell C, Herráez M. Comparative enhancer effects of Span®20 with Tween®20 and Azone® on the in vitro percutaneous penetration of compounds with different lipophilicities. Int J Pharm. 2000;202(1–2):133–40.

    Article  PubMed  Google Scholar 

  12. Fang JY, Yu SY, Wu PC, Huang YB, Tsai YH. In vitro skin permeation of estradiol from various proniosome formulations. Int J Pharm. 2001;215(1–2):91–9.

    Article  CAS  PubMed  Google Scholar 

  13. Krauel K, Davies NM, Hook S, Rades T. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J Control Release. 2005;106(1–2):76–87.

    Article  CAS  PubMed  Google Scholar 

  14. Mehta SK, Kaur G, Bhasin KK. Incorporation of antitubercular drug isoniazid in pharmaceutically accepted microemulsion: effect on microstructure and physical parameters. Pharm Res. 2008;25(1):227–36.

    Article  CAS  PubMed  Google Scholar 

  15. He D, Yang C, Ma M, Zhuang L, Chen X, Chen S. Studies of the chemical properties of tri-n-octylamine-secondary octanol-kerosene-HCl-H2O microemulsions and its extraction characteristics for cadmium(II). Colloids Surf A. 2004;232(1):39–47.

    Article  CAS  Google Scholar 

  16. Podlogar F, Gašperlin M, Tomšič M, Jamnik A, Rogač MB. Structural characterisation of water-Tween 40®/Imwitor 308®-isopropyl myristate microemulsions using different experimental methods. Int J Pharm. 2004;276(1–2):115–28.

    Article  CAS  PubMed  Google Scholar 

  17. Sripriya R, Muthu Raja K, Santhosh G, Chandrasekaran M, Noel M. The effect of structure of oil phase, surfactant and co-surfactant on the physicochemical and electrochemical properties of bicontinuous microemulsion. J Colloid Interface Sci. 2007;314(2):712–7.

    Article  CAS  PubMed  Google Scholar 

  18. Date AA, Nagarsenker MS. Parenteral microemulsions: an overview. Int J Pharm. 2008;355(1–2):19–30.

    Article  CAS  PubMed  Google Scholar 

  19. Pershing LK, Parry GE, Lambert LD. Disparity of in vitro and in vivo oleic acid-enhanced beta-estradiol percutaneous absorption across human skin. Pharm Res. 1993;10:1745–50.

    Article  CAS  PubMed  Google Scholar 

  20. Tanojo H, Junginger HE, Boddé HE. In vivo human skin permeability enhancement by oleic acid: transepidermal water loss and Fourier-transform infrared spectroscopy studies. J Control Release. 1997;47(1):31–9.

    Article  CAS  Google Scholar 

  21. Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. Int J Pharm. 2003;254(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  22. Subramanian N, Ray S, Ghosal SK, Bhadra R, Moulik SP. Formulation design of self-microemulsifying drug delivery systems for improved oral bioavailability of celecoxib. Biol Pharm Bull. 2004;27(12):1993–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lv FF, Zheng LQ, Tung CH. Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system. Int J Pharm. 2005;301(1–2):237–46.

    Article  CAS  PubMed  Google Scholar 

  24. Fanun M. Water solubilization in mixed nonionic surfactants microemulsions. J Dispers Sci Technol. 2008;29(8):1043–52.

    Article  CAS  Google Scholar 

  25. Alany RG, Rades T, Agatonovic-Kustrin S, Davies NM, Tucker IG. Effects of alcohols and diols on the phase behaviour of quaternary systems. Int J Pharm. 2000;196(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci. 2006;123–126:369–85.

    Article  PubMed  Google Scholar 

  27. Grest GS, Webman I, Safran SA, Bug ALR. Dynamic percolation in microemulsions. Phys Rev A. 1986;33(4):2842.

    Article  CAS  PubMed  Google Scholar 

  28. Mehta SK, Bala K. Tween-based microemulsions: a percolation view. Fluid Phase Equilib. 2000;172(2):197–209.

    Article  CAS  Google Scholar 

  29. Dasilva-Carbalhal J, Garcia-Rio L, Gomez-Diaz D, Mejuto JC, Perez-Lorenzo M. Influence of glymes upon percolative phenomena in AOT-based microemulsions. J Colloid Interface Sci. 2005;292(2):591–4.

    Article  CAS  PubMed  Google Scholar 

  30. Podlogar F, Bester Rogac M, Gasperlin M. The effect of internal structure of selected water–Tween 40®–Imwitor 308®–IPM microemulsions on ketoprofene release. Int J Pharm. 2005;302(1–2):68–77.

    Article  CAS  PubMed  Google Scholar 

  31. Kumar P, Mittal KL. Handbook of microemulsion science and technology. Boca Raton: CRC; 1999. p. 357–86.

    Google Scholar 

  32. Patzold G, Dawson K. Rheology of self-assembled fluids. J Chem Phys. 1996;104(15):5932–41.

    Article  Google Scholar 

  33. Djordjevic L, Primorac M, Stupar M, Krajisnik D. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm. 2004;271(1–2):11–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mitra RK, Paul BK. Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol. J Colloid Interface Sci. 2005;283(2):565–77.

    Article  CAS  PubMed  Google Scholar 

  35. Leser ME, van Evert WC, Agterol WGM. Phase behaviour of lecithin–water–alcohol–triacylglycerol mixtures. Colloids Surf A. 1996;116(3):293–308.

    Article  CAS  Google Scholar 

  36. Ding L, Dominska M, Fang Y, Blanchard GJ. Fluorescence and electrochemistry studies of pyrene-functionalized surface adlayers to probe the microenvironment formed by cholesterol. Electrochim Acta. 2008;53(23):6704–13.

    Article  CAS  Google Scholar 

  37. ZielinÌska K, Wilk KA, Jezierski A, Jesionowski T. Microstructure and structural transition in microemulsions stabilized by aldonamide-type surfactants. J Colloid Interface Sci. 2008;321(2):408–17.

    Article  Google Scholar 

  38. Lianos P. Fluorescence probe study of the interaction between pyrene and microemulsion-polymerized styrene. J Phys Chem. 1982;86(11):1935–7.

    Article  CAS  Google Scholar 

  39. Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99(7):2039–44.

    Article  CAS  Google Scholar 

  40. Zhang S, Rusling JF. Evaluation of microemulsions of cationic surfactants and a polyoxyethylene cosurfactant for electrolytic dechlorinations of chlorobiphenyls. J Colloid Interface Sci. 1996;182(2):558–63.

    Article  CAS  Google Scholar 

  41. Songca SP, Mbatha B. Solubilization of meso-tetraphenylporphyrin photosensitizers by substitution with fluorine and with 2, 3-dihydroxy-1-propyloxy groups. J Pharm Pharmacol. 2000;52:1361–7.

    Article  CAS  PubMed  Google Scholar 

  42. Khan AM, Shah SS. A UV–visible study of partitioning of pyrene in an anionic surfactant sodium dodecyl sulfate. J Dispers Sci Technol. 2008;29(10):1401–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of Quaid-i-Azam University and Higher Education Commission of Pakistan is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asad Muhammad Khan or Syed Sakhawat Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazar, M.F., Khan, A.M. & Shah, S.S. Microemulsion System with Improved Loading of Piroxicam: A Study of Microstructure. AAPS PharmSciTech 10, 1286–1294 (2009). https://doi.org/10.1208/s12249-009-9328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9328-9

Key words

Navigation