Skip to main content

Advertisement

Log in

Design and In Vitro/In Vivo Evaluation of Novel Mucoadhesive Buccal Discs of an Antifungal Drug: Relationship Between Swelling, Erosion, and Drug Release

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Two groups of fluconazole mucoadhesive buccal discs were prepared: (a) Fluconazole buccal discs prepared by direct compression containing bioadhesive polymers, namely, Carbopol 974p (Cp), sodium carboxymethyl cellulose (SCMC), or sodium alginate (SALG) in combination with hydroxypropyl methylcellulose (HPMC) or hydroxyethyl cellulose (HEC). (b) Fluconazole buccal discs prepared by freeze drying containing different polymer combinations (SCMC/HPMC, Cp/HPMC, SALG/HPMC, and chitosan/SALG). The prepared discs were evaluated by investigating their release pattern, swelling capacity, mucoadhesion properties, and in vitro adhesion time. In vivo evaluation of the buccal disc and in vivo residence times were also performed. Fluconazole salivary concentration after application of fluconazole buccal systems to four healthy volunteers was determined using microbiological assay and high-performance liquid chromatography. SCMC/HPMC buccal disc prepared by direct compression could be considered comparatively superior mucoadhesive disc regarding its in vitro adhesion time, in vivo residence time, and in vitro/in vivo release rates of the drug. Determination of the amount of drug released in saliva after application of the selected fluconazole disc confirmed the ability of the disc to deliver the drug over a period of approximately 5 h and to reduce side effects and possibility of drug interaction encountered during systemic therapy of fluconazole, which would be beneficial in the case of oral candidiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Khanna, S. P. Agarwal, and A. Ahuja. Mucoadhesive buccal drug delivery: a potential alternative to conventional therapy. Ind. J. Pharm. Sci. 60:1–11 (1998).

    Google Scholar 

  2. Martindale; The Complete Drug Reference, 34th Edition. In S. C. Sweetman (ed.), The Pharmaceutical Press London 372 (2005).

  3. C. Koks, P. Meenhorst, M. Hillebrand, and A. Bult. Pharmacokinetics of fluconazole in saliva and plasma after administration of an oral suspension and capsules. Antimicrob. Agents Chemother. 40:1935–1937 (1996).

    PubMed  CAS  Google Scholar 

  4. A. E. Collins, and P. B. Deasy. Bioadhesive lozenge for the improved delivery of cetylpyredinium chloride. J. Pharm. Sci. 792:116–119 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. S. Bouckaert, R. A. Lefebvre, and J. P. Remon. In vitro/in vivo correlation of the bioadhesive properties of a buccal bioadhesive miconazole slow-release tablet. Pharm. Res. 106:853–856 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. T. S. Owens, R. J. Dansereau, and A. Sakr. Development and evaluation of extended release bioadhesive sodium fluoride tablets. Int. J. Pharm. 2881:109–122 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. M. L. Vueba, L. A. E. B. deCarvalhob, F. Veigaa, J. J. Sousaa, and M. E. Pinaa. Influence of cellulose ether polymers on ketoprofen release from hydrophilic matrix tablets. Eur. J. Pharm. Biopharm. 58:51–59 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. M. S. El-Samaligy, S. A. Yahia, and E. B. Basalious. Formulation and evaluation of diclofenac sodium buccoadhesive discs. Int. J. Pharm. 286:27–39 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas. Mechanisms of solute release from porous hydrophillic polymers. Int. J. Pharm. 15:25–35 (1983).

    Article  CAS  Google Scholar 

  10. J. E. Mockel, and B. C. Lippold. Zero-order drug release from hydrocolloid matrices. Pharm. Res. 90:1066–1070 (1993).

    Article  Google Scholar 

  11. N. A. Peppas, and J. J. Sahlin. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 57:169–172 (1989).

    Article  CAS  Google Scholar 

  12. M. Ozyazıcı, E. H. Gokce, and G. Ertan. Release and diffusional modeling of metronidazole lipid matrices. Eur. J. Pharm. Biopharm. 63:331–339 (2006).

    Article  PubMed  Google Scholar 

  13. B. Parodi, E. Russo, G. Caviglioli, S. Cafaggi, and G. Bignardi. Development and characterization of a buccoadhesive dosage form of oxycodone hydrochloride. Drug Dev. Ind. Pharm. 22:445–450 (1996).

    Article  CAS  Google Scholar 

  14. K. Nam, J. Watanabe, and K. Ishihara. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. Int. J. Pharm. 2751–2:259–269 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. R. Y. Han, J. Y. Fang, K. C. Sung, and O. Y. Hu. Mucoadhesive buccal disks for novel nalbuphine prodrug controlled delivery: effect of formulation variables on drug release and mucoadhesive performance. Int. J. Pharm. 1772:201–209 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. T. Save, M. U. Stah, A. R. Ghamande, and P. Venkitachalam. Comparative study of buccoadhesive formulations and sublingual capsules of nifedipine. J. Pharm. Pharmacol. 463:192–195 (1994).

    PubMed  CAS  Google Scholar 

  17. J. Ali, R. Khar, A. Ahuja, and R. Kalra. Buccoadhesive erodible disk for treatment of oro-dental infections: design and characterization. Int. J. Pharm. 238:93–103 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. C. H. W. Koks, H. Rosing, P. L. Meenhorst, A. Bult, and J. H. Beijnen. High-performance liquid chromatographic determination of the antifungal drug fluconazole in plasma and saliva of human immunodeficiency virus-infected patients. J. Chromatogr. B. 663:345–351 (1995).

    Article  CAS  Google Scholar 

  19. The British Pharmacopeia, British Pharmacopoeia Commission, HMSO, London, 2007: Electronic version.

  20. J. Sujja-areevath, D. L. Munday, P. J. Cox, and K. A. Khan. Relationship between swelling, erosion and drug release in hydrophillic natural gum mini-matrix formulations. Eur. J. Pharm. Sci. 6:207–217 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. D. S. Roy, and B. D. Rohera. Comparative evaluation of rate of hydration and matrix erosion of HEC and HPC and study of drug release from their matrices. Eur. J. Pharm. Sci. 16:193–199 (2002).

    Article  Google Scholar 

  22. L. Perioli, V. Ambrogi, D. Rubini, S. Giovagnoli, M. Ricci, P. Blasi, and C. Rossi. Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J. Control. Rel. 95:521–533 (2004).

    Article  CAS  Google Scholar 

  23. T. Nagai, and R. Konishi. Buccal/gingival drug delivery systems. J. Control. Rel. 61:353–360 (1987).

    Article  CAS  Google Scholar 

  24. S. A. Yehia, O. N. El-Gazayerly, E. B. Basalious, and M. S. El-Din. Preparation and evaluation of fluconazole mucoadhesive buccal films. AAPS J. 8S2 (2006) Abstract T3172.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad B. Basalious.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yehia, S.A., El-Gazayerly, O.N. & Basalious, E.B. Design and In Vitro/In Vivo Evaluation of Novel Mucoadhesive Buccal Discs of an Antifungal Drug: Relationship Between Swelling, Erosion, and Drug Release. AAPS PharmSciTech 9, 1207–1217 (2008). https://doi.org/10.1208/s12249-008-9166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9166-1

Key words

Navigation