Skip to main content
Log in

Mechanistic Modeling of In Vitro Biopharmaceutic Data for a Weak Acid Drug: A Pathway Towards Deriving Fundamental Parameters for Physiologically Based Biopharmaceutic Modeling

  • Tutorial
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Mechanistic modeling of in vitro experiments using metabolic enzyme systems enables the extrapolation of metabolic clearance for in vitro-in vivo predictions. This is particularly important for successful clearance predictions using physiologically based pharmacokinetic (PBPK) modeling. The concept of mechanistic modeling can also be extended to biopharmaceutics, where in vitro data is used to predict the in vivo pharmacokinetic profile of the drug. This approach further allows for the identification of parameters that are critical for oral drug absorption in vivo. However, the routine use of this analysis approach has been hindered by the lack of an integrated analysis workflow. The objective of this tutorial is to (1) review processes and parameters contributing to oral drug absorption in increasing levels of complexity, (2) outline a general physiologically based biopharmaceutic modeling workflow for weak acids, and (3) illustrate the outlined concepts via an ibuprofen (i.e., a weak, poorly soluble acid) case example in order to provide practical guidance on how to integrate biopharmaceutic and physiological data to better understand oral drug absorption. In the future, we plan to explore the usefulness of this tutorial/roadmap to inform the development of PBPK models for BCS 2 weak bases, by expanding the stepwise modeling approach to accommodate more intricate scenarios, including the presence of diprotic basic compounds and acidifying agents within the formulation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, et al. Model-based drug development. Clin Pharmacol & Ther. 2007;82(1):21–32.

    Article  CAS  Google Scholar 

  2. Milligan PA, Brown MJ, Marchant B, Martin SW, Van Der Graaf PH, Benson N, et al. Model-based drug development: a rational approach to efficiently accelerate drug development. Clin Pharmacol & Ther. 2013;93(6):502–14.

    Article  CAS  Google Scholar 

  3. Jaiswal S, Ahmed T, Kollipara S, Bhargava M, Chachad S. Development, validation and application of physiologically based biopharmaceutics model to justify the change in dissolution specifications for DRL ABC extended release tablets. Drug Dev Ind Pharm. 2021;47(5):778–89.

    Article  CAS  PubMed  Google Scholar 

  4. Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. Physiologically based pharmacokinetics modeling in biopharmaceutics: case studies for establishing the bioequivalence safe space for innovator and generic drugs. Pharm Res. 2023;40(2):337–57.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao L, Kim M-J, Zhang L, Lionberger R. Generating model integrated evidence for generic drug development and assessment. Clin Pharmacol Ther. 2019;105(2):338–49.

    Article  Google Scholar 

  6. Amidon GL, Lennernas H, Shah VPCJ. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  7. FDA. Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms base on a Biopharmaceutics Classification System. Maryland, EUA, 2017. 19. 2018.

  8. Bartholomé R, Salden B, Vrolijk MF, Troost FJ, Masclee A, Bast A, et al. Paracetamol as a post prandial marker for gastric emptying, a food-drug interaction on absorption. PLoS One. 2015;10(9): e0136618.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sagara K, Mizuta H, Ohshiko M, Shibata M, Haga K. Relationship between the phasic period of interdigestive migrating contraction and the systemic bioavailability of acetaminophen in dogs. Pharm Res. 1995;12:594–8.

    Article  CAS  PubMed  Google Scholar 

  10. Chen M-L, Sadrieh N, Yu L. Impact of osmotically active excipients on bioavailability and bioequivalence of BCS class III drugs. AAPS J. 2013;15:1043–50.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hofsäss MA, Dressman J. Evaluation of differences in dosage form performance of generics using BCS-based biowaiver specifications and biopharmaceutical modeling–case examples amoxicillin and doxycycline. J Pharm Sci. 2020;109(8):2437–53.

    Article  PubMed  Google Scholar 

  12. Suarez-Sharp S, Li M, Duan J, Shah H, Seo P. Regulatory experience with in vivo in vitro correlations (IVIVC) in new drug applications. AAPS J. 2016;18:1379–90.

    Article  CAS  PubMed  Google Scholar 

  13. FDA. GDUFA I. 2012.

  14. FDA. GDUFA reauthorization performance goals and program enhancements fiscal years 2018-2022. 2017.

  15. Heimbach T, Suarez-Sharp S, Kakhi M, Holmstock N, Olivares-Morales A, Pepin X, et al. Dissolution and translational modeling strategies toward establishing an in vitro-in vivo link—a workshop summary report. Springer; 2019.

  16. Zhang X, Duan J, Kesisoglou F, Novakovic J, Amidon GL, Jamei M, et al. Mechanistic oral absorption modeling and simulation for formulation development and bioequivalence evaluation: report of an FDA public workshop. Vol. 6, CPT: Pharmacometrics & Systems Pharmacology. Wiley Online Library; 2017. 492–5.

  17. Zhang X, Yang Y, Grimstein M, Fan J, Grillo JA, Huang S-M, et al. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: an update on the 2018–2019 submissions to the US FDA’s Office of Clinical Pharmacology. J Clin Pharmacol. 2020;60:S160–78.

    Article  CAS  PubMed  Google Scholar 

  18. Huang S-M, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.

    Article  CAS  PubMed  Google Scholar 

  19. Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, et al. In vitro models for the prediction of in vivo performance of oral dosage forms: recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm. 2019;136:70–83.

    Article  CAS  PubMed  Google Scholar 

  20. Lennernas H, Lindahl A, Van Peer A, Ollier C, Flanagan T, Lionberger R, et al. In vivo predictive dissolution (IPD) and biopharmaceutical modeling and simulation: future use of modern approaches and methodologies in a regulatory context. Mol Pharm. 2017;14(4):1307–14.

    Article  CAS  PubMed  Google Scholar 

  21. Augustijns P, Vertzoni M, Reppas C, Langguth P, Lennernäs H, Abrahamsson B, et al. Unraveling the behavior of oral drug products inside the human gastrointestinal tract using the aspiration technique: history, methodology and applications. Eur J Pharm Sci. 2020;155: 105517.

    Article  CAS  PubMed  Google Scholar 

  22. Hens B, Sinko PD, Job N, Dean M, Al-Gousous J, Salehi N, et al. Formulation predictive dissolution (fPD) testing to advance oral drug product development: an introduction to the US FDA funded ‘21st Century BA/BE’project. Int J Pharm. 2018;548(1):120–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hens B, Tsume Y, Bermejo M, Paixao P, Koenigsknecht MJ, Baker JR, et al. Low buffer capacity and alternating motility along the human gastrointestinal tract: implications for in vivo dissolution and absorption of ionizable drugs. Mol Pharm. 2017;14(12):4281–94.

    Article  CAS  PubMed  Google Scholar 

  24. Parrott N, Suarez-Sharp S, Kesisoglou F, Pathak SM, Good D, Wagner C, et al. Best practices in the development and validation of physiologically based biopharmaceutics modeling. A workshop summary report. J Pharm Sci. 2021;110(2):584–93.

  25. Kuminek G, Salehi N, Waltz NM, Sperry DC, Greenwood DE, Hate SS, et al. Use of gastrointestinal simulator, mass transport analysis, and absorption simulation to investigate the impact of pH modifiers in mitigating weakly basic drugs’ performance issues related to gastric pH: palbociclib case study. Mol Pharm. 2022;20(1):147–58.

    Article  PubMed  Google Scholar 

  26. Guimarães M, Somville P, Vertzoni M, Fotaki N. Investigating the critical variables of azithromycin oral absorption using in vitro tests and PBPK modeling. J Pharm Sci. 2021;110(12):3874–88.

    Article  PubMed  Google Scholar 

  27. Kambayashi A, Dressman JB. Towards virtual bioequivalence studies for oral dosage forms containing poorly water-soluble drugs: a physiologically based biopharmaceutics modeling (PBBM) approach. J Pharm Sci. 2022;111(1):135–45.

    Article  CAS  PubMed  Google Scholar 

  28. Coupe AJ, Davis SS, Wilding IR. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res. 1991;8:360–4.

    Article  CAS  PubMed  Google Scholar 

  29. Koziolek M, Schneider F, Grimm M, Mode C, Seekamp A, Roustom T, et al. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J Control release. 2015;220:71–8.

    Article  CAS  PubMed  Google Scholar 

  30. Lindahl A, Ungell A-L, Knutson L, Lennernäs H. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm Res. 1997;14:497–502.

    Article  CAS  PubMed  Google Scholar 

  31. Zamek-Gliszczynski MJ, Lee CA, Poirier A, Bentz J, Chu X, Ellens H, et al. ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin Pharmacol & Ther. 2013;94(1):64–79.

    Article  CAS  Google Scholar 

  32. Cristofoletti R, Dressman JB. Bridging the gap between in vitro dissolution and the time course of ibuprofen-mediating pain relief. J Pharm Sci. 2016;105(12):3658–67.

    Article  CAS  PubMed  Google Scholar 

  33. Cristofoletti R, Hens B, Patel N, Esteban VV, Schmidt S, Dressman J. Integrating drug-and formulation-related properties with gastrointestinal tract variability using a product-specific particle size approach: case example ibuprofen. J Pharm Sci. 2019;108(12):3842–7.

    Article  PubMed  Google Scholar 

  34. Koenigsknecht MJ, Baker JR, Wen B, Frances A, Zhang H, Yu A, et al. In vivo dissolution and systemic absorption of immediate release ibuprofen in human gastrointestinal tract under fed and fasted conditions. Mol Pharm. 2017;14(12):4295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rippie EG, Lamb DJ, Romig PW. Solubilization of weakly acidic and basic drugs by aqueous solutions of polysorbate 80. J Pharm Sci. 1964;53(11):1346–8.

    Article  CAS  PubMed  Google Scholar 

  36. Jinno J, Oh D, Crison JR, Amidon GL. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant. J Pharm Sci. 2000;89(2):268–74.

    Article  CAS  PubMed  Google Scholar 

  37. Glomme A, März J, Dressman JB. Predicting the intestinal solubility of poorly soluble drugs. Pharmacokinet profiling drug Res Biol Physicochem Comput Strateg. 2006;259–80.

  38. Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data. J Pharm Sci. 2002;91(2):534–42.

  39. Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. J Pharm Sci. 1999;88(7):731–8.

  40. Johnson KC. Comparison of methods for predicting dissolution and the theoretical implications of particle-size-dependent solubility. J Pharm Sci. 2012;101(2):681–9.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, Wang J, Flanagan DR. Fundamental of diffusion and dissolution. In: Developing solid oral dosage forms. Elsevier; 2017. 253–70.

  42. Pepin X, Goetschy M, Abrahmsén-Alami S. Mechanistic models for USP2 dissolution apparatus, including fluid hydrodynamics and sedimentation. J Pharm Sci. 2022;111(1):185–96.

    Article  CAS  PubMed  Google Scholar 

  43. Bai GE, Armenante PM, Plank RV, Gentzler M, Ford K, Harmon P. Hydrodynamic investigation of USP dissolution test apparatus II. J Pharm Sci. 2007;96(9):2327–49.

    Article  CAS  PubMed  Google Scholar 

  44. Ozturk SS, Palsson BO, Dressman JB. Dissolution of lonizable drugs in buffered and unbuffered solutions. Pharm Res. 1988;5:272–82.

    Article  CAS  PubMed  Google Scholar 

  45. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids II: effect of buffers. J Pharm Sci. 1981;70(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  46. Cicali B, Long T, Kim S, Cristofoletti R. Assessing the impact of cystic fibrosis on the antipyretic response of ibuprofen in children: physiologically-based modeling as a candle in the dark. Br J Clin Pharmacol. 2020;86(11):2247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loisios-Konstantinidis I, Cristofoletti R, Fotaki N, Turner DB, Dressman J. Establishing virtual bioequivalence and clinically relevant specifications using in vitro biorelevant dissolution testing and physiologically-based population pharmacokinetic modeling. Case example: naproxen. Eur J Pharm Sci. 2020;143:105170.

  48. Potthast H, Dressman JB, Junginger HE, Midha KK, Oeser H, Shah VP, et al. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005;94(10):2121–31.

    Article  CAS  PubMed  Google Scholar 

  49. Cristofoletti R, Dressman JB. Matching phosphate and maleate buffer systems for dissolution of weak acids: equivalence in terms of buffer capacity of bulk solution or surface pH? Eur J Pharm Biopharm. 2016;103:104–8.

    Article  CAS  PubMed  Google Scholar 

  50. Loisios-Konstantinidis I, Hens B, Mitra A, Kim S, Chiann C, Cristofoletti R. Using physiologically based pharmacokinetic modeling to assess the risks of failing bioequivalence criteria: a tale of two ibuprofen products. AAPS J. 2020;22:1–9.

    Article  Google Scholar 

  51. Tsume Y, Langguth P, Garcia-Arieta A, Amidon GL. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen. Biopharm  Drug Dispos. 2012;33(7):366–77.

  52. Suarez-Sharp S, Cohen M, Kesisoglou F, Abend A, Marroum P, Delvadia P, et al. Applications of clinically relevant dissolution testing: workshop summary report. Springer; 2018.

  53. Paliwal JK, Smith DE, Cox SR, Berardi RR, Dunn-Kucharski VA, Elta GH. Stereoselective, competitive, and nonlinear plasma protein binding of ibuprofen enantiomers as determined in vivo in healthy subjects. J Pharmacokinet Biopharm. 1993;21(2):145–61.

    Article  CAS  PubMed  Google Scholar 

  54. Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA. The relationship between the pharmacokinetics of ibuprofen enantiomers and the dose of racemic ibuprofen in humans. Biopharm Drug Dispos. 1990;11(6):507–18.

    Article  CAS  Google Scholar 

  55. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11(9):3039–47.

    Article  CAS  PubMed  Google Scholar 

  56. Legg TJ, Laurent AL, Leyva R, Kellstein D. Ibuprofen sodium is absorbed faster than standard ibuprofen tablets: results of two open-label, randomized, crossover pharmacokinetic studies. Drugs R&D. 2014;14:283–90.

    Article  CAS  Google Scholar 

  57. Bermejo M, Hens B, Dickens J, Mudie D, Paixão P, Tsume Y, et al. A mechanistic physiologically-based biopharmaceutics modeling (PBBM) approach to assess the in vivo performance of an orally administered drug product: from IVIVC to IVIVP. Pharmaceutics. 2020;12(1):74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by F. Hoffmann-La Roche Ltd. under the Roche Access to Distinguished Scientist (ROADS) and Technology, Innovation, and Science (TIS) programs in collaboration with the University of Florida.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, investigation, writing, review: Venkata Krishna Kowthavarapu; writing, review: Nitin Bharat Charbe; scientific editing, review: Churni Gupta and Tatiana Iakovleva; scientific editing, review, supervision: Cordula Stillhart, Neil John Parrott, and Stephan Schmidt; conceptualization, review, resources, supervision: Rodrigo Cristofoletti. All authors approved the submitted version.

Corresponding author

Correspondence to Rodrigo Cristofoletti.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowthavarapu, V.K., Charbe, N.B., Gupta, C. et al. Mechanistic Modeling of In Vitro Biopharmaceutic Data for a Weak Acid Drug: A Pathway Towards Deriving Fundamental Parameters for Physiologically Based Biopharmaceutic Modeling. AAPS J 26, 44 (2024). https://doi.org/10.1208/s12248-024-00912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-024-00912-y

Keywords

Navigation