Skip to main content

Advertisement

Log in

Preclinical InVivo Data Integrated in a Modeling Network Informs a Refined Clinical Strategy for a CD3 T-Cell Bispecific in Combination with Anti-PD-L1

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

A Correction to this article was published on 01 April 2023

This article has been updated

Abstract

TYRP1-TCB is a CD3 T-cell bispecific (CD3-TCB) antibody for the treatment of advanced melanoma. A tumor growth inhibition (TGI) model was developed using mouse xenograft data with TYRP1-TCB monotherapy or TYRP1-TCB plus anti-PD-L1 combination. The model was translated to humans to inform a refined clinical strategy. From xenograft mouse data, we estimated an EC50 of 0.345 mg/L for TYRP1-TCB, close to what was observed in vitro using the same tumor cell line. The model showed that, though increasing the dose of TYRP1-TCB in monotherapy delays the time to tumor regrowth and promotes higher tumor cell killing, it also induces a faster rate of tumor regrowth. Combination with anti-PD-L1 extended the time to tumor regrowth by 25% while also decreasing the tumor regrowth rate by 69% compared to the same dose of TYRP1-TCB alone. The model translation to humans predicts that if patients’ tumors were scanned every 6 weeks, only 46% of the monotherapy responders would be detected even at a TYRP1-TCB dose resulting in exposures above the EC90. However, combination of TYRP1-TCB and anti-PD-L1 in the clinic is predicted to more than double the overall response rate (ORR), duration of response (DoR) and progression-free survival (PFS) compared to TYRP1-TCB monotherapy. As a result, it is highly recommended to consider development of CD3-TCBs as part of a combination therapy from the outset, without the need to escalate the CD3-TCB up to the Maximum Tolerated Dose (MTD) in monotherapy and without gating the combination only on RECIST-derived efficacy metrics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020;12(3):738.

    Article  CAS  PubMed  Google Scholar 

  2. Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. 2018;6(1):157.

    Article  Google Scholar 

  3. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article  CAS  PubMed  Google Scholar 

  4. Nathan P, Hassel JC, Rutkowski P, Baurain JF, Butler MO, Schlaak M, et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med. 2021;385(13):1196–206.

    Article  CAS  PubMed  Google Scholar 

  5. De Vries TJ, Fourkour A, Wobbes T, Verkroost G, Ruiter DJ, van Muijen GNP. Heterogeneous expression of immunotherapy candidate proteins gp100, MART-1, and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res. 1997;57:3223–9.

    PubMed  Google Scholar 

  6. de Vries TJ, Trancilkova D, Ruiter DJ, van Muijen GNP. High expression of immunotherapy candidate proteins gp100, MART-1, tyrosinase and TRP-1 in uveal melanoma. Br J Cancer. 1998;78(9):1156–61.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nicolini VG, Waldhauer I, Freimoser-Grundschober A, Richard M, Fahrni L, Bommer E, et al. Abstract LB-389: combination of TYRP1-TCB, a novel T cell bispecific antibody for the treatment of melanoma, with immunomodulatory agents. Cancer Res. 2020;80(16 Supplement):LB-389.

    Article  Google Scholar 

  8. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4.

    Article  CAS  PubMed  Google Scholar 

  9. Bacac M, Colombetti S, Herter S, Sam J, Perro M, Chen S, et al. CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies. Clin Cancer Res. 2018;24(19):4785–97.

    Article  CAS  PubMed  Google Scholar 

  10. Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22(13):3286–97.

    Article  CAS  PubMed  Google Scholar 

  11. Mathur D, Root AR, Bugaj-Gaweda B, Bisulco S, Tan X, Fang W, et al. A novel GUCY2C-CD3 T-cell engaging bispecific construct (PF-07062119) for the treatment of gastrointestinal cancers. Clin Cancer Res. 2020;26(9):2188–202.

    Article  CAS  PubMed  Google Scholar 

  12. Junttila TT, Li J, Johnston J, Hristopoulos M, Clark R, Ellerman D, et al. Antitumor efficacy of a bispecific antibody that targets HER2 and activates T cells. Cancer Res. 2014;74(19):5561–71.

    Article  CAS  PubMed  Google Scholar 

  13. Meermeier EW, Welsh SJ, Sharik ME, Du MT, Garbitt VM, Riggs DL, et al. Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy. Blood Cancer Discov. 2021;2(4):354–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sam J, Colombetti S, Fauti T, Roller A, Biehl M, Fahrni L, et al. Combination of T-cell bispecific antibodies with PD-L1 checkpoint inhibition elicits superior anti-tumor activity. Front Oncol. 2020;10: 575737.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wunderlich M, Manning N, Sexton C, O’Brien E, Byerly L, Stillwell C, et al. PD-1 inhibition enhances blinatumomab response in a UCB/PDX model of relapsed pediatric B-cell acute lymphoblastic leukemia. Front Oncol. 2021;11: 642466.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Osada T, Patel SP, Hammond SA, Osada K, Morse MA, Lyerly HK. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1. Cancer Immunol Immunother. 2015;64(6):677–88.

    Article  CAS  PubMed  Google Scholar 

  17. Claus C, Ferrara C, Xu W, Sam J, Lang S, Uhlenbrock F, et al. Tumor-targeted 4–1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 2019;11(496):eaav5989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiu D, Tavare R, Haber L, Aina OH, Vazzana K, Ram P, et al. A PSMA-targeting CD3 bispecific antibody induces antitumor responses that are enhanced by 4–1BB costimulation. Cancer Immunol Res. 2020;8(5):596–608.

    Article  CAS  PubMed  Google Scholar 

  19. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  20. Miles DW, Chan A, Dirix LY, Cortes J, Pivot X, Tomczak P, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010;28(20):3239–47.

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, Higgins MJ, Tolaney SM, Come SE, Smith MR, Fornier M, et al. A phase II trial of cabozantinib in hormone receptor-positive breast cancer with bone metastases. Oncologist. 2020;25(8):652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Backes FJ, Wei L, Chen M, Hill K, Dzwigalski K, Poi M, et al. Phase I evaluation of lenvatinib and weekly paclitaxel in patients with recurrent endometrial, ovarian, fallopian tube, or primary peritoneal Cancer. Gynecol Oncol. 2021;162(3):619–25.

    Article  CAS  PubMed  Google Scholar 

  24. Pearson T, Greiner DL, Shultz LD. Creation of “humanized″ mice to study human immunity. Curr Protoc Immunol. 2008;Chapter 15:Unit 15 21.

  25. Monolix version 2019R2. 2019R2 ed. Antony, France: Lixoft SAS, 2019: Lixoft; 2019.

  26. Krippendorff BF, Kuester K, Kloft C, Huisinga W. Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J Pharmacokinet Pharmacodyn. 2009;36(3):239–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fronton L, Pilari S, Huisinga W. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models. J Pharmacokinet Pharmacodyn. 2014;41(2):87–107.

    Article  CAS  PubMed  Google Scholar 

  28. Betts A, Keunecke A, van Steeg TJ, van der Graaf PH, Avery LB, Jones H, et al. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: a comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach. MAbs. 2018;10(5):751–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Claret L, Girard P, Hoff PM, Van Cutsem E, Zuideveld KP, Jorga K, et al. Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J Clin Oncol. 2009;27(25):4103–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chatterjee MS, Elassaiss-Schaap J, Lindauer A, Turner DC, Sostelly A, Freshwater T, et al. Population pharmacokinetic/pharmacodynamic modeling of tumor size dynamics in pembrolizumab-treated advanced melanoma. CPT Pharmacomet Syst Pharmacol. 2017;6(1):29–39.

    Article  CAS  Google Scholar 

  31. Mordenti J. Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci. 1986;75(11):1028–40.

    Article  CAS  PubMed  Google Scholar 

  32. Lindauer A, Valiathan CR, Mehta K, Sriram V, de Greef R, Elassaiss-Schaap J, et al. Translational pharmacokinetic/pharmacodynamic modeling of tumor growth inhibition supports dose-range selection of the anti-PD-1 antibody pembrolizumab. CPT Pharmacomet Syst Pharmacol. 2017;6(1):11–20.

    Article  CAS  Google Scholar 

  33. Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.

    Google Scholar 

  34. Fidler M, Hallow M, Wilkins J, Wang W. RxODE: facilities for simulating from ODE-based models. 2021.

  35. Eigenmann MJ, Karlsen TV, Wagner M, Tenstad O, Weinzierl T, Fauti T, et al. Pharmacokinetics and pharmacodynamics of T-cell bispecifics in the tumour interstitial fluid. Pharmaceutics. 2021;13(12):2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fabian KP, Padget MR, Fujii R, Schlom J, Hodge JW. Differential combination immunotherapy requirements for inflamed (warm) tumors versus T cell excluded (cool) tumors: engage, expand, enable, and evolve. J Immunother Cancer. 2021;9(2):e001691.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ai L, Chen J, Yan H, He Q, Luo P, Xu Z, et al. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des Devel Ther. 2020;14:3625–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R, Keilholz U, clinicalguidelines@esmo.org EGCEa. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann Oncol. 2019;30(12):1884–901.

    Article  CAS  PubMed  Google Scholar 

  39. Tabernero J, Melero I, Ros W, Argiles G, Marabelle A, Rodriguez-Ruiz ME, et al. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J Clin Oncol. 2017;35(15_suppl):3002.

    Article  Google Scholar 

  40. Shah M, Rahman A, Theoret MR, Pazdur R. The drug-dosing conundrum in oncology: when less is more. N Engl J Med. 2021;385(16):1443–5.

    Article  Google Scholar 

Download references

Funding

The present work was funded by F. Hoffmann—La Roche Ltd.

Author information

Authors and Affiliations

Authors

Contributions

JS: conceptualization, formal analysis, methodology, validation, visualization, writing—original draft, writing—review and editing. VN: conceptualization, data curation, investigation, resources, supervision, writing—review and editing. LF: investigation, data curation, methodology, resources. IW: investigation, data curation, methodology, resources. AW: conceptualization, writing—review and editing. CJ: conceptualization, writing—review and editing. SF: conceptualization, writing—review and editing. SS: conceptualization, writing—review and editing. CK: supervision, writing—review and editing. PU: supervision, writing—review and editing. LF: conceptualization, writing—review and editing. NF: conceptualization, formal analysis, supervision, validation, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Javier Sánchez.

Ethics declarations

Conflict of Interest

Javier Sánchez, Valeria Nicolini, Linda Fahrni, Inja Waldhauer, Antje-Christine Walz, Candice Jamois, Stephen Fowler, Silke Simon, Christian Klein, Pablo Umaña, and Nicolas Frances were Roche employees at the time this work was performed. Pablo Umaña and Christian Klein declare patents and stock ownership with Roche. Lena E. Friberg reports personal fees from Roche outside the submitted work. Experimental study protocol was reviewed and approved by local government authorities (ZH225-17).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been updated to correct the name of the eleventh author from Lena Friberg to Lena E. Friberg.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, J., Nicolini, V., Fahrni, L. et al. Preclinical InVivo Data Integrated in a Modeling Network Informs a Refined Clinical Strategy for a CD3 T-Cell Bispecific in Combination with Anti-PD-L1. AAPS J 24, 106 (2022). https://doi.org/10.1208/s12248-022-00755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00755-5

Keywords

Navigation