Skip to main content

Advertisement

Log in

Evaluation of Microparticulate (S)-4,5-Dihydroxy-2,3-pentanedione (DPD) as a Potential Vaccine Adjuvant

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Adjuvants potentiate the immune response against co-inoculated antigens in the vaccine formulation. Based on the mechanism of action, the adjuvants are classified as immunostimulatory adjuvants and vaccine delivery systems. (S)-4,5-Dihydroxy-2,3-pentanedione (DPD) is the precursor of bacterial quorum sensing molecule, autoinducer (AI)-2. We tested the immunogenicity and adjuvant potential of microparticulate formulation of (S)-DPD via in vitro evaluation. By formulating the microparticles of (S)-DPD, we consolidated the advantages of both the classes of adjuvants. The microparticulate (S)-DPD was tested for its immunogenicity and cytotoxicity. We further tested its adjuvant effect by combining it with particulate vaccines for measles and gonorrhea and compared the adjuvant effect observed with the microparticulate formulations of the FDA-approved adjuvants alum, MPL A®, and MF59®. Microparticulate (S)-DPD was found to be non-cytotoxic towards the antigen-presenting cells and had an adjuvant effect with microparticulate gonorrhea vaccine. Further studies with additional bacterial vaccines and the in vivo evaluation will confirm the potential of microparticulate (S)-DPD as a probable vaccine adjuvant candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Edelman R. The development and use of vaccine adjuvants [Internet]. In: Vol. 21, Applied Biochemistry and Biotechnology - Part B Molecular Biotechnology: Springer; 2002. p. 129–48. [cited 2020 Nov 29]. Available from: https://link.springer.com/article/10.1385/MB:21:2:129.

  2. Singh M, O’Hagan DT. Recent advances in vaccine adjuvants. Pharm Res. 2002;19(6):715–28.

    Article  CAS  Google Scholar 

  3. Adjuvant | Definition of Adjuvant by Merriam-Webster [Internet]. [cited 2020 Nov 29]. Available from: https://www.merriam-webster.com/dictionary/adjuvant

  4. Aguilar JC, Rodríguez EG. Vaccine adjuvants revisited. Vaccine. 2007;25(19):3752–62.

    Article  CAS  Google Scholar 

  5. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work [Internet]. In: Vol. 33, Immunity. Immunity; 2010. p. 492–503. [cited 2020 Nov 29] Available from: https://pubmed.ncbi.nlm.nih.gov/21029960/.

  6. Harini AP, Kumar AH, Praveen Kumar G, Neeta S. An overview of immunologic adjuvants - a review. 2013

    Google Scholar 

  7. Jones KS. Biomaterials as vaccine adjuvants. Biotechnol Prog [Internet]. 2008;24(4):807–14 [cited 2020 Nov 29] Available from: http://doi.wiley.com/10.1002/btpr.10.

    Article  CAS  Google Scholar 

  8. Mallapragada SK, Narasimhan B. Immunomodulatory biomaterials. Vol. 364, International Journal of Pharmaceutics. Elsevier; 2008. p. 265–71

  9. Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses [Internet]. In: Vol. 9, Expert Review of Vaccines: NIH Public Access; 2010. p. 1095–107. [cited 2020 Nov 29] Available from: /pmc/articles/PMC2963573/?report=abstract.

  10. O’Hogan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines. 2003;2(2):269–83.

    Article  Google Scholar 

  11. O’Hagan DT, Rahman D, McGee JP, Jeffery H, Davies MC, Williams P, et al. Biodegradable microparticles as controlled release antigen delivery systems. Immunology [Internet]. 1991;73(2):239–42 [cited 2020 Nov 29] Available from: http://www.ncbi.nlm.nih.gov/pubmed/2071168.

    Google Scholar 

  12. O’Hagan DT, Jeffery H, Roberts MJJ, McGee JP, Davis SS. Controlled release microparticles for vaccine development. Vaccine. 1991 Oct 1;9(10):768–71.

    Article  Google Scholar 

  13. Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med [Internet]. 2005;11(4S):s63 [cited 2020 Nov 29] Available from: http://www.nature.com/naturemedicine.

    Article  CAS  Google Scholar 

  14. Nixon DF, Hioe C, De Chen P, Bian Z, Kuebler P, Li ML, et al. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine [Internet]. 1996;14(16):1523–30 [cited 2020 Nov 29] Available from: https://pubmed.ncbi.nlm.nih.gov/9014294/.

    Article  CAS  Google Scholar 

  15. O’Hagan DT, Jeffery H, Davis SS. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine. 1993;11(9):965–9.

    Article  Google Scholar 

  16. Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A [Internet]. 1999;96(4):1639–44 [cited 2020 Nov 29] Available from: https://pubmed.ncbi.nlm.nih.gov/9990077/.

    Article  CAS  Google Scholar 

  17. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319–46.

    Article  CAS  Google Scholar 

  18. Bassler BL, Losick R. Bacterially speaking [Internet]. Cell. 2006;125:237–46 [cited 2020 Nov 29] Available from: https://pubmed.ncbi.nlm.nih.gov/16630813/.

  19. Lowery CA, Dickerson TJ, Janda KD. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem Soc Rev. 2008;37(7):1337–46.

    Article  CAS  Google Scholar 

  20. Ng WL, Bassler BL. Bacterial quorum-sensing network architectures [Internet]. Vol. 43, Annual Review of Genetics. Annu Rev Genet. 2009:197–222 [cited 2020 Nov 29] Available from: https://pubmed.ncbi.nlm.nih.gov/19686078/.

  21. Stotani S, Gatta V, Medda F, Padmanaban M, Karawajczyk A, Tammela P, et al. A versatile strategy for the synthesis of 4,5-dihydroxy-2,3-pentanedione (DPD) and related compounds as potential modulators of bacterial quorum sensing. Molecules. 2018;23(10).

  22. Lowery CA, Park J, Kaufmann GF, Janda KD. An unexpected switch in the modulation of AI-2-based quorum sensing discovered through synthetic 4,5-dihydroxy-2,3-pentanedione analogues. J Am Chem Soc [Internet]. 2008;130(29):9200–1 [cited 2020 Nov 29] Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668569/.

    Article  CAS  Google Scholar 

  23. De Keersmaeckert SCJ, Varszegi C, Van Boxel N, Habel LW, Metzger K, Daniels R, et al. Chemical synthesis of (S)-4,5-dihydroxy-2,3-pentanedione, a bacterial signal molecule precursor, and validation of its activity in Salmonella typhimurium. J Biol Chem [Internet]. 2005;280(20):19563–8 [cited 2020 Nov 29] Available from: https://pubmed.ncbi.nlm.nih.gov/15790567/.

    Article  Google Scholar 

  24. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control [Internet]. Vol. 2, Cold Spring Harbor Perspectives in Medicine. Cold Spring Harbor Laboratory Press. 2012; [cited 2020 Nov 29]. Available from: /pmc/articles/PMC3543102/?report=abstract.

  25. Gala R, Zaman R, D’Souza M, Zughaier S. Novel whole-cell inactivated Neisseria gonorrhoeae microparticles as vaccine formulation in microneedle-based transdermal immunization. Vaccines [Internet]. 2018;6(3):60 [cited 2020 Nov 29] Available from: http://www.mdpi.com/2076-393X/6/3/60.

    Article  CAS  Google Scholar 

  26. Chablani L, Tawde SA, D’Souza MJ. Spray-dried microparticles: a potential vehicle for oral delivery of vaccines. J Microencapsul. 2012;29(4):388–97.

    Article  CAS  Google Scholar 

  27. Gala RP, Popescu C, Knipp GT, McCain RR, Ubale RV, Addo R, et al. Physicochemical and preclinical evaluation of a novel buccal measles vaccine. AAPS PharmSciTech [Internet]. 2017;18(2):283–92. https://doi.org/10.1208/s12249-016-0566-3.

    Article  CAS  Google Scholar 

  28. Enriquez GG, Rizvi SAA, D’Souza MJ, Do DP. Formulation and evaluation of drug-loaded targeted magnetic microspheres for cancer therapy. Int J Nanomedicine [Internet]. 2013;8:1393–402 [cited 2021 May 3] Available from: https://pubmed.ncbi.nlm.nih.gov/23630421/.

    Google Scholar 

  29. Gala RP, D’Souza M, Zughaier SM. Evaluation of various adjuvant nanoparticulate formulations for meningococcal capsular polysaccharide-based vaccine. Vaccine [Internet]. 2016;34(28):3260–7. https://doi.org/10.1016/j.vaccine.2016.05.010.

    Article  CAS  Google Scholar 

  30. D’Souza B, Bhowmik T, Shashidharamurthy R, Oettinger C, Selvaraj P, D’Souza M. Oral microparticulate vaccine for melanoma using M-cell targeting. J Drug Target. 2012;20(2):166–73.

    Article  Google Scholar 

  31. Whitehead NA, Barnard AML, Slater H, Simpson NJL, GPC S. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev [Internet]. 2001;25(4):365–404 [cited 2020 Nov 29] Available from: www.fems-microbiology.org.

    Article  CAS  Google Scholar 

  32. Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, De Vos WM. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol [Internet]. 2002;81(1–4):233–43 Available from: [cited 2020 Nov 29] https://link.springer.com/article/10.1023/A:1020522919555.

    CAS  Google Scholar 

  33. World Health Organization. Guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines. WHO Press [Internet]. 2013:56 Available from: https://www.who.int/biologicals/areas/vaccines/ADJUVANTS_Post_ECBS_edited_clean_Guidelines_NCE_Adjuvant_Final_17122013_WEB.pdf.

  34. Storni T, Kündig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems [Internet]. Vol. 57, Advanced Drug Delivery Reviews. Elsevier B.V.; 2005 [cited 2020 Jun 19]. p. 333–55. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X04002066.

  35. De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response [Internet]. Drug Discov Today. 2011;16:569–82 [cited 2020 Jun 19] Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644611001334.

    Article  Google Scholar 

  36. Jordan SLP, Russo MR, Blessing RL, Theis AB. Inactivation of glutaraldehyde by reaction with sodium bisulfite. J Toxicol Environ Heal - Part A [Internet]. 1996;47(3):299–309 [cited 2021 May 3] Available from: https://pubmed.ncbi.nlm.nih.gov/8604152/.

    Article  CAS  Google Scholar 

  37. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking [Internet]. Vol. 37, BioTechniques. Eaton Publishing Company; 2004 [cited 2021 May 3]. p. 790–802. Available from: https://www.future-science.com/doi/abs/10.2144/04375RV01

  38. Ukidve A, Cu K, Goetz M, Angsantikul P, Curreri A, Tanner EEL, et al. Ionic-liquid-based safe adjuvants. Adv Mater [Internet]. 2020;32(46):2002990 [cited 2020 Nov 29] Available from: https://onlinelibrary.wiley.com/doi/10.1002/adma.202002990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. D’Souza.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

The authors alone are responsible for the contents and writing of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, D., Chbib, C., Uddin, M.N. et al. Evaluation of Microparticulate (S)-4,5-Dihydroxy-2,3-pentanedione (DPD) as a Potential Vaccine Adjuvant. AAPS J 23, 84 (2021). https://doi.org/10.1208/s12248-021-00617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00617-6

KEY WORDS

Navigation