Skip to main content
Log in

Biliary Excretion–Mediated Food Effects and Prediction

  • Research Article
  • Theme: Predicting the Effects of Food Intake on Pharmacokinetics : Current Status and Future Perspectives
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Many orally administered drugs with negative food effects (i.e., lower exposure under fed conditions) are often primarily or partially eliminated by biliary excretion. The aim of this study is to assess the potential correlation between a negative food effect and biliary excretion. Correlation analysis was conducted using a training dataset containing 27 drugs which met the following criteria: (1) immediate-release formulations, (2) shows a negative food effect, (3) > 10% biliary clearance, and (4) does not undergo extensive metabolism. A correlation between fed-state biliary clearance (CLb,fed) and fasted-state biliary clearance (CLb,fast) (y = 1.81*x, R2 = 0.68) was observed. The 1.8-fold increase in biliary clearance was then used as a correction factor to improve physiologically based pharmacokinetic (PBPK) prediction of food effects for 12 test drugs. The mean deviations of predicted fed/fasting AUC ratio and Cmax ratio from clinically observed values were reduced from 32.4 to 17.2% and from 63.3 to 54.3%, respectively. In contrast to the positive food effects on most biopharmaceutics classification system (BCS) class II drugs for which food-stimulated bile flow increases drug solubility and absorption, our results suggest that the elimination of biliary excreted drugs is increased by food-stimulated bile flow, resulting in negative food effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gu CH, Li H, Levons J, Lentz K, Gandhi RB, Raghavan K, et al. Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res. 2007;24(6):1118–30.

    CAS  PubMed  Google Scholar 

  2. Raman S, Polli JE. Prediction of positive food effect: bioavailability enhancement of BCS class II drugs. Int J Pharm. 2016;506(1–2):110–5.

    CAS  PubMed  Google Scholar 

  3. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin Pharmacokinet. 1999;36(3):233–54.

    CAS  PubMed  Google Scholar 

  4. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    CAS  PubMed  Google Scholar 

  5. Lentz KA. Current methods for predicting human food effect. AAPS J. 2008;10(2):282–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Li M, et al. Predictive performance of physiologically based pharmacokinetic models for the effect of food on oral drug absorption: current status. CPT Pharmacometrics Syst Pharmacol. 2018;7(2):82–9.

    CAS  PubMed  Google Scholar 

  7. Goncalves P, et al. Inhibition of butyrate uptake by the primary bile salt chenodeoxycholic acid in intestinal epithelial cells. J Cell Biochem. 2012;113(9):2937–47.

    CAS  PubMed  Google Scholar 

  8. Tistaert C, Heimbach T, Xia B, Parrott N, Samant TS, Kesisoglou F. Food effect projections via physiologically based pharmacokinetic modeling: predictive case studies. J Pharm Sci. 2019;108(1):592–602.

    CAS  PubMed  Google Scholar 

  9. Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.

    CAS  PubMed  Google Scholar 

  10. Wagner C, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst Pharmacol. 2015;4(4):226–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dahan A, Wolk O, Kim YH, Ramachandran C, Crippen GM, Takagi T, et al. Purely in silico BCS classification: science based quality standards for the world's drugs. Mol Pharm. 2013;10(11):4378–90.

    CAS  PubMed  Google Scholar 

  12. Feely J, Nadeau J, Wood AJ. Effects of feeding on the systemic clearance of indocyanine green and propranolol blood concentrations and plasma binding. Br J Clin Pharmacol. 1983;15(3):383–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Elvin AT, Cole AFD, Pieper JA, Rolbin SH, Lalka D. Effect of food on lidocaine kinetics: mechanism of food-related alteration in high intrinsic clearance drug elimination. Clin Pharmacol Ther. 1981;30(4):455–60.

    CAS  PubMed  Google Scholar 

  14. Daneshmend TK, Roberts CJ. The influence of food on the oral and intravenous pharmacokinetics of a high clearance drug: a study with labetalol. Br J Clin Pharmacol. 1982;14(1):73–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Marigold JH, Gilmore IT, Thompson RP. Effects of a meal on plasma clearance of [14C]glycocholic acid and indocyanine green in man. Clin Sci (Lond). 1981;61(3):325–30.

    CAS  Google Scholar 

  16. Svensson CK, Edwards DJ, Mauriello PM, Barde SH, Foster AC, Lanc RA, et al. Effect of food on hepatic blood flow: implications in the "food effect" phenomenon. Clin Pharmacol Ther. 1983;34(3):316–23.

    CAS  PubMed  Google Scholar 

  17. Akorn, Drug Label of IC-GREEN®. 2015: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/011525s027lbl.pdf. Accessed 16 Sept 2020.

  18. Mithani SD, Bakatselou V, TenHoor CN, Dressman JB. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res. 1996;13(1):163–7.

    CAS  PubMed  Google Scholar 

  19. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23(1):165–76.

    CAS  PubMed  Google Scholar 

  20. Faulkner RD, Fernandez P, Lawrence G, Sia LL, Falkowski AJ, Weiss AI, et al. Absolute bioavailability of cefixime in man. J Clin Pharmacol. 1988;28(8):700–6.

    CAS  PubMed  Google Scholar 

  21. Westphal JF, Jehl F, Adloff M, Brogard JM. Role of intrahepatic protein binding in the hepatobiliary extraction profile of cefixime in humans. Clin Pharmacol Ther. 1993;54(5):476–84.

    CAS  PubMed  Google Scholar 

  22. Hitzenberger G, Takacs F, Pittner H. Pharmacokinetics of the beta-adrenergic receptor blocking agent celiprolol after single intravenous and oral administrations in man. Arzneimittelforschung. 1983;33:50–2.

    CAS  Google Scholar 

  23. Rudi J, Raedsch R, Gerteis C, Schlenker T, Plachky J, Walter-Sack I, et al. Plasma kinetics and biliary excretion of colchicine in patients with chronic liver disease after oral administration of a single dose and after long-term treatment. Scand J Gastroenterol. 1994;29(4):346–51.

    CAS  PubMed  Google Scholar 

  24. Mutual-Pharmaceutical-Company. Drug Label of COLCRYS. 2009; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022351lbl.pdf. Accessed 16 Sept 2020.

  25. Kaye CM. The biliary excretion of acebutolol in man. J Pharm Pharmacol. 1976;28(5):449–50.

    CAS  PubMed  Google Scholar 

  26. Zaman R, Wilkins MR, Kendall MJ, Jack DB. The effect of food and alcohol on the pharmacokinetics of acebutolol and its metabolite, diacetolol. Biopharm Drug Dispos. 1984;5(1):91–5.

    CAS  PubMed  Google Scholar 

  27. Flouvat B, Roux A, Chau NP, Viallet M, Andre-Fouet X, Woehrle R, et al. Pharmacokinetics and bioavailability of diacetolol, the main metabolite of acebutolol. Eur J Clin Pharmacol. 1981;19(4):287–92.

    CAS  PubMed  Google Scholar 

  28. Yang X, Gandhi YA, Duignan DB, Morris ME. Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure-pharmacokinetic relationships. AAPS J. 2009;11(3):511–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. White RJ, Chamberlain DA, Howard M, Smith TW. Plasma concentrations of digoxin after oral administration in the fasting and postprandial ste. Br Med J. 1971;1(5745):380–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McLean CC, Teft WA, Morse BL, Gryn SE, Hegele RA, Kim RB. Food effect on Rosuvastatin disposition and low-density lipoprotein cholesterol. Clin Pharmacol Ther. 2018;104(3):525–33.

    CAS  PubMed  Google Scholar 

  31. Brookman LJ, Rolan PE, Benjamin IS, Palmer KR, Wyld PJ, Lloyd P, et al. Pharmacokinetics of valsartan in patients with liver disease. Clin Pharmacol Ther. 1997;62(3):272–8.

    CAS  PubMed  Google Scholar 

  32. Novartis, Drug label of Diovan®. 2011: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021283s033lbl.pdf. Accessed 16 Sept 2020.

  33. European-Medicines-Agency. Assessment report for betrixaban. 2018; Available from: https://www.ema.europa.eu/en/documents/assessment-report/dexxience-epar-refusal-public-assessment-report_.pdf. Accessed 16 Sept 2020.

  34. Portola-Pharmaceuticals. Drug Label of BEVYXXA™. 2017; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208383s000lbl.pdf. Accessed 16 Sept 2020.

  35. Tenero D, Martin D, Ilson B, Jushchyshyn J, Boike S, Lundberg D, et al. Pharmacokinetics of intravenously and orally administered eprosartan in healthy males: absolute bioavailability and effect of food. Biopharm Drug Dispos. 1998;19(6):351–6.

    CAS  PubMed  Google Scholar 

  36. Abbott-Laboratories. Drug Label of TEVETEN®. 2011; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020738s026lbl.pdf. Accessed 16 Sept 2020.

  37. Merck&Co., I., Drug label of STEGLATRO™. 2017: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209803s000lbl.pdf. Accessed 16 Sept 2020.

  38. Kelly MR, et al. Pharmacokinetics of orally administered furosemide. Clin Pharmacol Ther. 1974;15(2):178–86.

    CAS  PubMed  Google Scholar 

  39. McCrindle JL, et al. Effect of food on the absorption of frusemide and bumetanide in man. Br J Clin Pharmacol. 1996;42(6):743–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Allen A, Bygate E, Clark D, Lewis A, Pay V. The effect of food on the bioavailability of oral gemifloxacin in healthy volunteers. Int J Antimicrob Agents. 2000;16(1):45–50.

    CAS  PubMed  Google Scholar 

  41. Colangelo, P., Clinical pharmacology and biopharmaceutics review for NDA 21158, FACTIVE. 2000.

  42. Paratek-Pharmaceuticals, Drug label of NUZYRA™. 2018: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209816_209817lbl.pdf. Accessed 16 Sept 2020.

  43. Ghibellini G, Leslie EM, Brouwer KL. Methods to evaluate biliary excretion of drugs in humans: an updated review. Mol Pharm. 2006;3(3):198–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan HY, et al. Effect of food on pravastatin pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther Toxicol. 1993;31(6):291–4.

    CAS  PubMed  Google Scholar 

  45. Boehringer-Ingelheim, Drug label of MICARDIS®. 2011: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020850s032lbl.pdf. Accessed 16 Sept 2020.

  46. Reyes G. Clinical pharmacology and biopharmaceutics review for NDA 21618 Tindamax. 2004; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/21-618_Tindamax_BioPharmr.pdf. Accessed 16 Sept 2020.

  47. Chung S. Clinical pharmacology and biopharmaceutics review for NDA 22271 NESINA. 2008; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/022271Orig1s000ClinPharmR.pdf. Accessed 16 Sept 2020.

  48. Eli-Lilly-Company. Drug Label of OLUMIANT. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/207924s000lbl.pdf. Accessed 16 Sept 2020.

  49. GlaxoSmithKline, Drug label of TAFINLAR. 2014: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/202806s002lbl.pdf. Accessed 16 Sept 2020.

  50. Bershas DA, Ouellet D, Mamaril-Fishman DB, Nebot N, Carson SW, Blackman SC, et al. Metabolism and disposition of oral dabrafenib in cancer patients: proposed participation of aryl nitrogen in carbon-carbon bond cleavage via decarboxylation following enzymatic oxidation. Drug Metab Dispos. 2013;41(12):2215–24.

    CAS  PubMed  Google Scholar 

  51. Boehringer-Ingelheim, Drug label of JARDIANCE® 2014: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204629s000lbl.pdf. Accessed 16 Sept 2020.

  52. Miao Z, Nucci G, Amin N, Sharma R, Mascitti V, Tugnait M, et al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab Dispos. 2013;41(2):445–56.

    CAS  PubMed  Google Scholar 

  53. Custodio JM, Yin X, Hepner M, Ling KHJ, Cheng A, Kearney BP, et al. Effect of food on rilpivirine/emtricitabine/tenofovir disoproxil fumarate, an antiretroviral single-tablet regimen for the treatment of HIV infection. J Clin Pharmacol. 2014;54(4):378–85.

    PubMed  Google Scholar 

  54. DiGiacinto J. Clinical pharmacology and biopharmaceutics review for NDA 21500 EMTRIVA. 2003; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-500_Emtriva_BioPharmr_P1.pdf. Accessed 16 Sept 2020.

  55. Pfizer-Inc. Drug Label of DAURISMO™. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210656s000lbl.pdf. Accessed 16 Sept 2020.

  56. Novartis, Drug label of GLEEVEC®. 2016: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021588s047lbl.pdf. Accessed 16 Sept 2020.

  57. Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44(9):879–94.

    CAS  PubMed  Google Scholar 

  58. Benedetti MS, et al. Absorption, distribution, metabolism and excretion of [14C]levocetirizine, the R enantiomer of cetirizine, in healthy volunteers. Eur J Clin Pharmacol. 2001;57(8):571–82.

    CAS  PubMed  Google Scholar 

  59. Cheng Y, Lin BJ, Guo JH, Huang BL, Fang LP, Que WC, et al. The effect of food on the pharmacokinetic properties and bioequivalence of two formulations of levocetirizine dihydrochloride in healthy Chinese volunteers. Drug Des Devel Ther. 2019;13:3625–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Amicus-Therapeutics. Drug Label of GALAFOLD™. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208623lbl.pdf. Accessed 16 Sept 2020.

  61. Hanyok JJ. Clinical pharmacokinetics of sotalol. Am J Cardiol. 1993;72(4):19A–26A.

    CAS  PubMed  Google Scholar 

  62. Ho MY, et al. Trametinib, a first-in-class oral MEK inhibitor mass balance study with limited enrollment of two male subjects with advanced cancers. Xenobiotica. 2014;44(4):352–68.

    CAS  PubMed  Google Scholar 

  63. Novartis. Drug Label of MEKINIST. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/204114s007lbl.pdf. Accessed 16 Sept 2020.

  64. Boehringer-Ingelheim-Pharmaceuticals. Drug Label of GILOTRIF®. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/201292s014lbl.pdf. Accessed 16 Sept 2020.

  65. Pfizer-Inc. Drug Label of XALKORI®. 2017; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/202570s021lbl.pdf. Accessed 16 Sept 2020.

  66. Bristol-Myers-Squibb. Drug Label of DAKLINZA™. 2017; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/206843s006lbl.pdf. Accessed 16 Sept 2020.

  67. Verastem-Inc. Drug Label of COPIKTRA. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211155s000lbl.pdf.

  68. AbbVie-Inc. Drug Label of Orilissa. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210450s000lbl.pdf. Accessed 16 Sept 2020.

  69. Mather LE, Austin KL, Philpot CR, McDonald P. Absorption and bioavailability of oral erythromycin. Br J Clin Pharmacol. 1981;12(2):131–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Saktiawati AM, et al. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. J Antimicrob Chemother. 2016;71(3):703–10.

    CAS  PubMed  Google Scholar 

  71. Pfizer-Inc. Drug Label of SELZENTRY. 2013; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022128s011lbl.pdf. Accessed 16 Sept 2020.

  72. Vaz-da-Silva M, Loureiro AI, Nunes T, Maia J, Tavares S, Falcão A, et al. Bioavailability and bioequivalence of two enteric-coated formulations of omeprazole in fasting and fed conditions. Clin Drug Investig. 2005;25(6):391–9.

    CAS  PubMed  Google Scholar 

  73. Novartis-Pharmaceuticals. Drug Label of FARYDAK®. 2015; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205353s000lbl.pdf. Accessed 16 Sept 2020.

  74. Sahasrabudhe V, Fediuk DJ, Matschke K, Shi H, Liang Y, Hickman A, et al. Effect of food on the pharmacokinetics of Ertugliflozin and its fixed-dose combinations Ertugliflozin/Sitagliptin and Ertugliflozin/Metformin. Clin Pharmacol Drug Dev. 2019;8(5):619–27.

    CAS  PubMed  Google Scholar 

  75. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic food-drug interactions—a perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31–59.

    CAS  PubMed  Google Scholar 

  76. US-FDA. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. 2017; Available from: https://www.fda.gov/media/70963/download. Accessed 16 Sept 2020.

  77. Rose RH, Turner DB, Neuhoff S, Jamei M. Incorporation of the time-varying postprandial increase in splanchnic blood flow into a PBPK model to predict the effect of food on the pharmacokinetics of orally administered high-extraction drugs. AAPS J. 2017;19(4):1205–17.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xinning Yang from the FDA, Office of Clinical Pharmacology, for his comments and suggestions in the revision of this manuscript.

Disclaimer

This article reflects the views of the authors and should not be construed to represent FDA’s views or policies.

Funding

This work was supported by the FDA Summer Intern Program and Critical Path Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zou.

Additional information

Guest Editors: Peng Zou, Doanh Tran, and Shirley Seo

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 80 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Tran, D., Zhang, X. et al. Biliary Excretion–Mediated Food Effects and Prediction. AAPS J 22, 124 (2020). https://doi.org/10.1208/s12248-020-00509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00509-1

Key Words

Navigation