Skip to main content

Advertisement

Log in

A Non-invasive Liquid Biopsy Screening of Urine-Derived Exosomes for miRNAs as Biomarkers in Endometrial Cancer Patients

  • Research Article
  • Theme: Therapeutic and Diagnostic Applications of Exosomes and other Extracellular Vesicles
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Exosomes have great potential to serve as a source of diagnostic and prognostic biomarkers for endometrial cancer (EC). Urine-derived exosomes from patients with EC and patients with symptoms of EC, but without established EC, were used to evaluate a unique miRNA expression profile. Of the 84 miRNA studied, 57 were amplified in qPCR, suggesting the differential packaging of miRNA in exosomes. Further, hsa-miR-200c-3p was identified to be enriched the most. Various bioinformatics and in silico tools were used to evaluate the biological significance of hsa-miR-200c-3p in EC. We conclude that differential miRNA in exosomes can be utilized for discovery of biomarker signatures and EC diagnosis; hsa-miR-200c-3p is one such candidate. Urine-derived exosomes pave the way for the development of non-invasive biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ACS, Available from: https://www.cancer.org/cancer/endometrial-cancer/about/key-statistics.html 2017.

  2. Fleming GF. Second-line therapy for endometrial cancer: the need for better options. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(31):3535–40.

    Article  Google Scholar 

  3. Fader AN, Arriba LN, Frasure HE, von Gruenigen VE. Endometrial cancer and obesity: epidemiology, biomarkers, prevention and survivorship. Gynecol Oncol. 2009;114(1):121–7.

    Article  PubMed  Google Scholar 

  4. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro Oncol. 2013;113(1):1–11.

    Article  Google Scholar 

  5. Keller S, Ridinger J, Rupp A-K, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3:1–29.

    Google Scholar 

  7. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42(11):7290–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Qazi KR, Torregrosa Paredes P, Dahlberg B, Grunewald J, Eklund A, Gabrielsson S. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax. 2010;65(11):1016–24.

    Article  PubMed  Google Scholar 

  9. Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. van Empel VP, De Windt LJ, da Costa Martins PA. Circulating miRNAs: reflecting or affecting cardiovascular disease? Curr Hypertens Rep. 2012;14(6):498–509.

    Article  PubMed  CAS  Google Scholar 

  11. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  PubMed  CAS  Google Scholar 

  12. Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103–41.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O'Byrne KJ. Functions and therapeutic roles of exosomes in cancer. Front Oncol. 2014;4:127.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.

    Article  PubMed  CAS  Google Scholar 

  15. Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers. 2017; 9(8): doi: 10.3390.

  16. Hannafon BN, Tigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18(1):90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Liu C, Eng C, Shen J, Lu Y, Takata Y, Mehdizadeh A, et al. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget. 2016;7(46):76250–60.

    PubMed  PubMed Central  Google Scholar 

  18. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.

    Article  PubMed  CAS  Google Scholar 

  19. Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19(15):2406–13.

    Article  PubMed  CAS  Google Scholar 

  20. Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. 2016;6:38541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Khurana R, Ranches G, Schafferer S, Lukasser M, Rudnicki M, Mayer G, et al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA. 2017;23(2):142–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Delić D, Eisele C, Schmid R, Baum P, Wiech F, Gerl M, et al. Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PLoS One. 2016;11(3):e0150154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Principe S, Jones EE, Kim Y, Sinha A, Nyalwidhe JO, Brooks J, et al. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. Proteomics. 2013;13(0):1667–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Knepper MA, Pisitkun T. Exosomes in urine: who would have thought…? Kidney Int. 2007;72(9):1043–5.

    Article  PubMed  CAS  Google Scholar 

  26. Fernández-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA. (2010). Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 2010;77(8):736–42.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li M, Zeringer E, Barta T, Schageman J, Cheng A, Vlassov AV. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc B. 2014;369(1652):20130502. https://doi.org/10.1098/rstb.2013.0502.

    Article  CAS  Google Scholar 

  28. Foj L, Ferrer F, Serra M, Arévalo A, Gavagnach M, Giménez N, et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate. 2017;77(6):573–83.

    Article  PubMed  CAS  Google Scholar 

  29. Rodríguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer. 2017;16:156.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Osamu I, Hiroshi O, Horino T, Nakamura T, Hosotani M, Mizoguchi T, et al. Urinary exosome-derived microRNAs reflecting the changes of renal function and histopathology in dogs. Sci Rep. 2017;11(7):40340.

    Google Scholar 

  31. Lötvall J. Hill AF. Hochberg F, Buzás EI, Di Vizio D, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles. 2014;3:https://doi.org/10.3402/jev.v3.26913.

  32. Wang Y, Dong X, Hu B, Wang XJ, Wang Q, Wang WL. The effects of Micro-429 on inhibition of cervical cancer cells through targeting ZEB1 and CRKL. Biomed Pharmacother. 2016;80:311–21.

    Article  PubMed  CAS  Google Scholar 

  33. Yue S, Wang L, Zhang H, Min Y, Lou Y, Sun H, et al. miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM. Tumour Biol. 2015;36(9):6741–9.

    Article  PubMed  CAS  Google Scholar 

  34. Sinh ND, Endo K, Miyazawa K, Saitoh M. Ets1 and ESE1 reciprocally regulate expression of ZEB1/ZEB2, dependent on ERK1/2 activity, in breast cancer cells. Cancer Sci. 2017;108(5):952–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang T, Chen X, Qiao W, Kong L, Sun D, Li Z. Transcription factor E2F1 promotes EMT by regulating ZEB2 in small cell lung cancer. BMC Cancer. 2017;17:719.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sulaiman SA, Ab Mutalib N-S, Jamal R. miR-200c regulation of metastases in ovarian cancer: potential role in epithelial and mesenchymal transition. Frontiers in. Pharmacology. 2016;7:271.

    Google Scholar 

  37. Kumar S, Nag A, Mandal CC. A comprehensive review on miR-200c, a promising cancer biomarker with therapeutic potential. Curr Drug Targets. 2015;16(12):1381–403.

    Article  PubMed  CAS  Google Scholar 

  38. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    Article  CAS  Google Scholar 

  39. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    Article  CAS  Google Scholar 

  40. Dijkhuizen FPHLJ, Mol BWJ, Brölmann HAM, Heintz APM. The accuracy of endometrial sampling in the diagnosis of patients with endometrial carcinoma and hyperplasia. Cancer. 2000;89:1765–72.

    Article  PubMed  CAS  Google Scholar 

  41. Kirschner MA, Schneider G, Ertel NH, Worton E. Obesity, androgens, estrogens, and cancer risk. Cancer Res. 1982;42(8 Suppl):3281s–5s.

    PubMed  CAS  Google Scholar 

  42. Motamedinia P, Scott AN, Bate KL, Sadeghi N, Salazar G, Shapiro E, et al. Urine exosomes for non-invasive assessment of gene expression and mutations of prostate cancer. PLoS One. 2016;11(5):e0154507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hessels D, Schalken JA. Urinary biomarkers for prostate cancer: a review. 2013. Asian J Androl. 2013;15(3):333–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32.

    Article  PubMed  CAS  Google Scholar 

  45. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    Article  PubMed  CAS  Google Scholar 

  46. Falcone G, Felsani A, D’Agnano I. Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res. 2015; CR;34(1):32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jayaraman M, Radhakrishnan R, Mathews CA, Yan M, Husain S, Moxley KM, et al. Identification of novel diagnostic and prognostic miRNA signatures in endometrial cancer. Genes Cancer. 2017;8(5–6):566–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Jiao A, Sui M, Zhang L, Sun P, Geng D, Zhang W, et al. MicroRNA-200c inhibits the metastasis of non-small cell lung cancer cells by targeting ZEB2, an epithelial-mesenchymal transition regulator. Mol Med Rep. 2016;13(4):3349–55.

    Article  PubMed  CAS  Google Scholar 

  49. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol. 2012;32(3):633–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pan Y, Liang H, Chen W, Zhang H, Wang N, Wang F, et al. microRNA-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs. RNA Biol. 2015;12(3):276–89.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62(9):1315–26.

    Article  PubMed  CAS  Google Scholar 

  52. Cittelly DM, Dimitrova I, Howe EN, Cochrane DR, Jean A, Spoelstra NS, et al. Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel. Mol Cancer Ther. 2012;11(12):2556–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ma C, Huang T, Ding Y-C, Yu W, Wang Q, Meng B, et al. microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int J Clin Exp Pathol. 2015;8(6):6533–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Kopp F, Oak PS, Wagner E, Roidl A. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One. 2012;7(11):e50469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the patients for providing the samples and the dedicated cancer center staff for assistance in sample collection. Editorial assistance from Ms. Kathy Kyler at the office of Vice President of Research, OUHSC, is appreciated. Rajagopal Ramesh is an Oklahoma TSET Research Scholar and holds the Jim and Christy Everest Endowed Chair in Cancer Developmental Therapeutics.

Funding

The work was supported in part by funds received from the Stephenson Cancer Center Seed Grant (RR), Presbyterian Health Foundation Seed Grant (RR), Presbyterian Health Foundation Bridge Grant (RR), Chapman Foundation, and Jim and Christy Everest Endowed Chair in Cancer Developmental Therapeutics (RR) at the University of Oklahoma Health Sciences Center.

Author information

Authors and Affiliations

Authors

Contributions

AS, KM, and RR conducted the studies and collected data; YDZ performed statistical analysis; AS, KM, RR, DND, YDZ, and RR conceived and designed the studies; AS and RR wrote the manuscript; AS, KM, RR, DND, YDZ, and RR critically analyzed and interpreted the data; AS, KM, RR, DND, YDZ, and RR critically reviewed, provided suggestions, and edited the manuscript; and RR supervised the project.

Corresponding author

Correspondence to Rajagopal Ramesh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Juliane Nguyen and Steven Jay

Electronic Supplementary Material

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Moxley, K., Ruskin, R. et al. A Non-invasive Liquid Biopsy Screening of Urine-Derived Exosomes for miRNAs as Biomarkers in Endometrial Cancer Patients. AAPS J 20, 82 (2018). https://doi.org/10.1208/s12248-018-0220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0220-y

KEY WORDS

Navigation