Skip to main content

Advertisement

Log in

Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical Monitoring

  • Review Article
  • Theme: Integrating Microdialysis and Imaging Tools in Systems Pharmacology
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Microdialysis is a powerful sampling technique used to monitor small molecules in vivo. Despite the many applications of microdialysis sampling, it is limited by the method of analyzing the resulting samples. An emerging technique for analysis of microdialysis samples is liquid chromatography-tandem mass spectrometry (LC-MS/MS). This technique is highly versatile, allowing multiplexed analysis of neurotransmitters, metabolites, and neuropeptides. Using LC-MS/MS for polar neurotransmitters is hampered by weak retention reverse phase LC columns. Several derivatization reagents have been utilized to enhance separation and resolution of neurochemicals in dialysate samples including benzoyl chloride (BzCl), dansyl chloride, formaldehyde, ethylchloroformate, and propionic anhydride. BzCl reacts with amine and phenol groups so that many neurotransmitters can be labeled. Besides improving separation on reverse phase columns, this reagent also increases sensitivity. It is available in a heavy form so that it can be used to make stable-isotope labeled internal standard for improved quantification. Using BzCl with LC-MS/MS has allowed for measuring as many as 70 neurochemicals in a single assay. With slightly different conditions, LC-MS/MS has also been used for monitoring endocannabinoids. LC-MS/MS is also useful for neuropeptide assay because it allows for highly sensitive, sequence specific measurement of most peptides. These advances have allowed for multiplexed neurotransmitter measurements in behavioral, circuit analysis, and drug effect studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ungerstedt U, Hallström Å. In vivo microdialysis—a new approach to the analysis of neurotransmitters in the brain. Life Sci. 1987;41(7):861–4.

    Article  CAS  PubMed  Google Scholar 

  2. Watson CJ, Venton BJ, Kennedy RT. In vivo measurements of neurotransmitters by microdialysis sampling. Anal Chem. 2006;78(5):1391–9.

    Article  PubMed  Google Scholar 

  3. Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H. Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci. 1999;2(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  4. Torres GE. The dopamine transporter proteome. J Neurochem. 2006;97(Suppl 1):3–10.

    Article  CAS  PubMed  Google Scholar 

  5. Antkiewicz-Michaluk L, Ossowska K, Romańska I, Michaluk J, Vetulani J. 3-Methoxytyramine, an extraneuronal dopamine metabolite plays a physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Eur J Pharmacol. 2008;599(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  6. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci. 2005;25(11):2933–40.

    Article  CAS  PubMed  Google Scholar 

  7. Mazzuferi M, Palma E, Martinello K, Maiolino F, Roseti C, Fucile S, et al. Enhancement of GABA(A)-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proc Natl Acad Sci U S A. 2010;107(7):3180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, et al. Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol. 2005;67(1):140–51.

    CAS  PubMed  Google Scholar 

  9. Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lada MW, Vickroy TW, Kennedy RT. High temporal resolution monitoring of glutamate and aspartate in vivo using microdialysis on-line with capillary electrophoresis with laser-induced fluorescence detection. Anal Chem. 1997;69(22):4560–5.

    Article  CAS  PubMed  Google Scholar 

  11. Slaney TR, Nie J, Hershey ND, Thwar PK, Linderman J, Burns MA, et al. Push–pull perfusion sampling with segmented flow for high temporal and spatial resolution in vivo chemical monitoring. Anal Chem. 2011;83(13):5207–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Justice J. Quantitative microdialysis of neurotransmitters. J Neurosci Methods. 1993;48(3):263–76.

    Article  CAS  PubMed  Google Scholar 

  13. Wong J-MT, Malec PA, Mabrouk OS, Ro J, Dus M, Kennedy RT. Benzoyl chloride derivatization with liquid chromatography–mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A. 2016;1446:78–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N, et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci. 2006;9(8):1050–6.

    Article  CAS  PubMed  Google Scholar 

  15. Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A. 2005;102(24):8740–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Westerink B. Correlation between high-performance liquid chromatography and automated fluorimetric methods for the determination of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid in nervous tissue and cerebrospinal fluid. J Chromatogr. 1982;233:69–77.

    Article  CAS  PubMed  Google Scholar 

  17. Carboni E, Imperato A, Perezzani L, Di Chiara G. Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience. 1989;28(3):653–61.

    Article  CAS  PubMed  Google Scholar 

  18. Herrera-Marschitz M, Goiny M, You ZB, Meana JJ, Pettersson E, Rodriguez-Puertas R, et al. On the release of glutamate and aspartate in the basal ganglia of the rat: interactions with monoamines and neuropeptides. Neurosci Biobehav Rev. 1997;21(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  19. Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, et al. In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discov. 2011;6(2):109–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chirita R-I, West C, Finaru A-L, Elfakir C. Approach to hydrophilic interaction chromatography column selection: application to neurotransmitters analysis. J Chromatogr A. 2010;1217(18):3091–104.

    Article  CAS  PubMed  Google Scholar 

  21. Danaceau JP, Chambers EE, Fountain KJ. Hydrophilic interaction chromatography (HILIC) for LC–MS/MS analysis of monoamine neurotransmitters. Bioanalysis. 2012;4(7):783–94.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Rauch A, Lee H, Xiao H, Rainer G, Logothetis NK. Capillary hydrophilic interaction chromatography/mass spectrometry for simultaneous determination of multiple neurotransmitters in primate cerebral cortex. Rapid Commun Mass Spectrom. 2007;21(22):3621–8.

    Article  CAS  PubMed  Google Scholar 

  23. Cai H-L, Zhu R-H. Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography–electrospray ionization tandem mass spectrometry. Anal Biochem. 2010;396(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  24. Nirogi R, Komarneni P, Kandikere V, Boggavarapu R, Bhyrapuneni G, Benade V, et al. A sensitive and selective quantification of catecholamine neurotransmitters in rat microdialysates by pre-column dansyl chloride derivatization using liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2013;913:41–7.

    Article  Google Scholar 

  25. Park J-Y, Myung S-W, Kim I-S, Choi D-K, Kwon S-J, Yoon S-H. Simultaneous measurement of serotonin, dopamine and their metabolites in mouse brain extracts by high-performance liquid chromatography with mass spectrometry following derivatization with ethyl chloroformate. Biol Pharm Bull. 2012;36(2):252–8.

    Article  PubMed  Google Scholar 

  26. Guo K, Ji C, Li L. Stable-isotope dimethylation labeling combined with LC−ESI MS for quantification of amine-containing metabolites in biological samples. Anal Chem. 2007;79(22):8631–8.

    Article  CAS  PubMed  Google Scholar 

  27. Greco S, Danysz W, Zivkovic A, Gross R, Stark H. Microdialysate analysis of monoamine neurotransmitters—a versatile and sensitive LC–MS/MS method. Anal Chim Acta. 2013;771:65–72.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang D, Wu L, Chow DS, Tam VH, Rios DR. Quantitative determination of dopamine in human plasma by a highly sensitive LC–MS/MS assay: application in preterm neonates. J Pharm Biomed Anal. 2016;117:227–31.

    Article  CAS  PubMed  Google Scholar 

  29. Song P, Mabrouk OS, Hershey ND, Kennedy RT. In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography–mass spectrometry. Anal Chem. 2011;84(1):412–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Anari MR, Bakhtiar R, Zhu B, Huskey S, Franklin RB, Evans DC. Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization: application in trace analysis of ethinylestradiol in rhesus monkey plasma. Anal Chem. 2002;74(16):4136–44.

    Article  CAS  PubMed  Google Scholar 

  31. Kang X, Xiao J, Huang X, Gu Z. Optimization of dansyl derivatization and chromatographic conditions in the determination of neuroactive amino acids of biological samples. Clin Chim Acta. 2006;366(1):352–6.

    Article  CAS  PubMed  Google Scholar 

  32. Yamada H, Yamahara A, Yasuda S, Abe M, Oguri K, Fukushima S, et al. Dansyl chloride derivatization of methamphetamine: a method with advantages for screening and analysis of methamphetamine in urine. J Anal Toxicol. 2002;26(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  33. Inagaki S, Tano Y, Yamakata Y, Higashi T, Min JZ, Toyo'oka T. Highly sensitive and positively charged precolumn derivatization reagent for amines and amino acids in liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(9):1358–64.

    Article  CAS  PubMed  Google Scholar 

  34. Zestos AG, Mikelman SR, Kennedy RT, Gnegy ME. PKCβ inhibitors attenuate amphetamine-stimulated dopamine efflux. ACS Chem Neurosci. 2016;7(6):757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olson R, Justice J Jr. Quantitative microdialysis under transient conditions. Anal Chem. 1993;65(8):1017–22.

    Article  CAS  PubMed  Google Scholar 

  36. Hershey ND, Kennedy RT. In vivo calibration of microdialysis using infusion of stable-isotope labeled neurotransmitters. ACS Chem Neurosci. 2013;4(5):729–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clément R, Malinovsky J-M, Dollo G, Le Corre P, Chevanne F, Le Verge R. In vitro and in vivo microdialysis calibration using retrodialysis for the study of the cerebrospinal distribution of bupivacaine. J Pharm Biomed Anal. 1998;17(4):665–70.

    Article  PubMed  Google Scholar 

  38. Bengtsson J, Boström E, Hammarlund-Udenaes M. The use of a deuterated calibrator for in vivo recovery estimations in microdialysis studies. J Pharm Sci. 2008;97(8):3433–41.

    Article  CAS  PubMed  Google Scholar 

  39. Peters JL, Michael AC. Modeling voltammetry and microdialysis of striatal extracellular dopamine: the impact of dopamine uptake on extraction and recovery ratios. J Neurochem. 1998;70(2):594–603.

    Article  CAS  PubMed  Google Scholar 

  40. Robinson TE, Jurson PA, Bennett JA, Bentgen KM. Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Res. 1988;462(2):211–22.

    Article  CAS  PubMed  Google Scholar 

  41. Sulzer D, Chen T, Lau Y, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci. 1995;15(5):4102–8.

    CAS  PubMed  Google Scholar 

  42. Mikelman S, Mardirossian N, Gnegy ME. Tamoxifen and amphetamine abuse: are there therapeutic possibilities? J Chem Neuroanat. 2016;

  43. Manji HK, Lenox RH. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry. 1999;46(10):1328–51.

    Article  CAS  PubMed  Google Scholar 

  44. Zarate CA, Singh JB, Carlson PJ, Quiroz J, Jolkovsky L, Luckenbaugh DA, et al. Efficacy of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania: a pilot study. Bipolar Disord. 2007;9(6):561–70.

    Article  CAS  PubMed  Google Scholar 

  45. Carpenter C, Sorenson RJ, Jin Y, Klossowski S, Cierpicki T, Gnegy M, et al. Design and synthesis of triarylacrylonitrile analogues of tamoxifen with improved binding selectivity to protein kinase C. Bioorg Med Chem. 2016;24(21):5495–504.

    Article  CAS  PubMed  Google Scholar 

  46. Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF, Kennedy RT, et al. Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. Eur J Neurosci. 2014;40(7):3041–54.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev. 1986;11(2):157–98.

    Article  CAS  Google Scholar 

  48. Berridge CW, Stratford TL, Foote SL, Kelley AE. Distribution of dopamine b-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. SYNAPSE-NEW YORK. 1997;27:230–41.

    Article  CAS  Google Scholar 

  49. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998;28(3):309–69.

    Article  CAS  PubMed  Google Scholar 

  50. Kohlert JG, Meisel RL. Sexual experience sensitizes mating-related nucleus accumbens dopamine responses of female Syrian hamsters. Behav Brain Res. 1999;99(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  51. Mas M, Fumero B, Fernandez-Vera JR, Gonzalez-Mora JL. Neurochemical correlates of sexual exhaustion and recovery as assessed by in vivo microdialysis. Brain Res. 1995;675(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  52. Mas M, Fumero B, González-Mora J. Voltammetric and microdialysis monitoring of brain monoamine neurotransmitter release during sociosexual interactions. Behav Brain Res. 1995;71(1):69–IN5.

    Article  CAS  PubMed  Google Scholar 

  53. Pfaus J, Damsma G, Nomikos GG, Wenkstern D, Blaha C, Phillips A, et al. Sexual behavior enhances central dopamine transmission in the male rat. Brain Res. 1990;530(2):345–8.

    Article  CAS  PubMed  Google Scholar 

  54. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R, Vander Weele CM, et al. Mesolimbic dopamine signals the value of work. Nat Neurosci. 2016;19(1):117-+.

    Article  CAS  PubMed  Google Scholar 

  55. Buczynski MW, Parsons LH. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br J Pharmacol. 2010;160(3):423–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Béquet F, Uzabiaga F, Desbazeille M, Ludwiczak P, Maftouh M, Picard C, et al. CB1 receptor-mediated control of the release of endocannabinoids (as assessed by microdialysis coupled with LC/MS) in the rat hypothalamus. Eur J Neurosci. 2007;26(12):3458–64.

    Article  PubMed  Google Scholar 

  57. Walker JM, Huang SM, Strangman NM, Tsou K, Sañudo-Peña MC. Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci. 1999;96(21):12198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou Y, Mabrouk OS, Kennedy RT. Rapid preconcentration for liquid chromatography–mass spectrometry assay of trace level neuropeptides. J Am Soc Mass Spectrom. 2013;24(11):1700–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giuffrida A, Parsons L, Kerr T, De Fonseca FR, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci. 1999;2(4):358–63.

    Article  CAS  PubMed  Google Scholar 

  60. Rimmerman N, Hughes H, Bradshaw H, Pazos M, Mackie K, Prieto A, et al. Compartmentalization of endocannabinoids into lipid rafts in a dorsal root ganglion cell line. Br J Pharmacol. 2008;153(2):380–9.

    Article  CAS  PubMed  Google Scholar 

  61. Patel S, Carrier EJ, Ho WV, Rademacher DJ, Cunningham S, Reddy DS, et al. The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity. J Lipid Res. 2005;46(2):342–9.

    Article  CAS  PubMed  Google Scholar 

  62. Caillé S, Alvarez-Jaimes L, Polis I, Stouffer DG, Parsons LH. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J Neurosci. 2007;27(14):3695–702.

    Article  PubMed  Google Scholar 

  63. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  64. Wiskerke J, Irimia C, Cravatt BF, De Vries TJ, Schoffelmeer AN, Pattij T, et al. Characterization of the effects of reuptake and hydrolysis inhibition on interstitial endocannabinoid levels in the brain: an in vivo microdialysis study. ACS Chem Neurosci. 2012;3(5):407–17.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grouzmann E, Aubert J, Waeber B, Brunner H. A sensitive and specific two-site, sandwich-amplified enzyme immunoassay for neuropeptide Y. Peptides. 1992;13(6):1049–54.

    Article  CAS  PubMed  Google Scholar 

  66. Emmett MR, Andrén PE, Caprioli RM. Specific molecular mass detection of endogenously released neuropeptides using in vivo microdialysis/mass spectrometry. J Neurosci Methods. 1995;62(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  67. Haskins WE, Wang Z, Watson CJ, Rostand RR, Witowski SR, Powell DH, et al. Capillary LC-MS2 at the attomole level for monitoring and discovering endogenous peptides in microdialysis samples collected in vivo. Anal Chem. 2001;73(21):5005–14.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou Y, Wong J-MT, Mabrouk OS, Kennedy RT. Reducing adsorption to improve recovery and in vivo detection of neuropeptides by microdialysis with LC-MS. Anal Chem. 2015;87(19):9802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Svensson M, Sköld K, Nilsson A, Fälth M, Nydahl K, Svenningsson P, et al. Neuropeptidomics: MS applied to the discovery of novel peptides from the brain. Anal Chem. 2007;79(1):14–21.

    Article  CAS  Google Scholar 

  70. Haskins WE, Watson CJ, Cellar NA, Powell DH, Kennedy RT. Discovery and neurochemical screening of peptides in brain extracellular fluid by chemical analysis of in vivo microdialysis samples. Anal Chem. 2004;76(18):5523–33.

    Article  CAS  PubMed  Google Scholar 

  71. Schmerberg CM, Li L. Mass spectrometric detection of neuropeptides using affinity-enhanced microdialysis with antibody-coated magnetic nanoparticles. Anal Chem. 2013;85(2):915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li Q, Zubieta J-K, Kennedy RT. Practical aspects of in vivo detection of neuropeptides by microdialysis coupled off-line to capillary LC with multistage MS. Anal Chem. 2009;81(6):2242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maidment N, Brumbaugh D, Rudolph V, Erdelyi E, Evans C. Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo. Neuroscience. 1989;33(3):549–57.

    Article  CAS  PubMed  Google Scholar 

  74. Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R. Novel microdialysis method to assess neuropeptides and large molecules in free-moving mouse. Neuroscience. 2011;186:110–9.

    Article  CAS  PubMed  Google Scholar 

  75. Herbaugh AW, Stenken JA. Antibody-enhanced microdialysis collection of CCL2 from rat brain. J Neurosci Methods. 2011;202(2):124–7.

    Article  CAS  PubMed  Google Scholar 

  76. Pettersson A, Markides K, Bergquist J. Enhanced microdialysis of neuropeptides. ACTA BIOCHIMICA POLONICA-ENGLISH EDITION. 2001;48(4):1117–20.

    CAS  Google Scholar 

  77. Sköld K, Svensson M, Nilsson A, Zhang X, Nydahl K, Caprioli RM, et al. Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J Proteome Res. 2006;5(2):262–9.

    Article  PubMed  Google Scholar 

  78. Schultz W, Dickinson A. Neuronal coding of prediction errors. Annu Rev Neurosci. 2000;23(1):473–500.

    Article  CAS  PubMed  Google Scholar 

  79. Palacios JM, Kuhar MJ. Neurotensin receptors are located on dopamine-containing neurones in rat midbrain. 1981.

  80. Patterson CM, Wong J-MT, Leinninger GM, Allison MB, Mabrouk OS, Kasper CL, et al. Ventral tegmental area neurotensin signaling links the lateral hypothalamus to locomotor activity and striatal dopamine efflux in male mice. Endocrinology. 2015;156(5):1692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mabrouk OS, Li Q, Song P, Kennedy RT. Microdialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movement. J Neurochem. 2011;118(1):24–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mabrouk OS, Falk T, Sherman SJ, Kennedy RT, Polt R. CNS penetration of the opioid glycopeptide MMP-2200: a microdialysis study. Neurosci Lett. 2012;531(2):99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. André PE, Caprioli RM. In vivo metabolism of substance P in rat striatum utilizing microdialysis/liquid chromatography/micro-electrospray mass spectrometry. J Mass Spectrom. 1995;30(6):817–24.

    Article  Google Scholar 

  84. Svensson M, Sköld K, Svenningsson P, Andren PE. Peptidomics-based discovery of novel neuropeptides. J Proteome Res. 2003;2(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  85. Kaplan A, Björkesten L, Åström J, Andren PE. A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics. 2002;2:447–54.

    Article  PubMed  Google Scholar 

  86. Wei H, Nolkrantz K, Parkin MC, Chisolm CN, O'Callaghan JP, Kennedy RT. Identification and quantification of neuropeptides in brain tissue by capillary liquid chromatography coupled off-line to MALDI-TOF and MALDI-TOF/TOF-MS. Anal Chem. 2006;78(13):4342–51.

    Article  CAS  PubMed  Google Scholar 

  87. Dowell JA, Vander Heyden W, Li L. Rat neuropeptidomics by LC−MS/MS and MALDI−FTMS: enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC. J Proteome Res. 2006;5(12):3368–75.

    Article  CAS  PubMed  Google Scholar 

  88. Behrens HL, Chen R, Li L. Combining microdialysis, NanoLC-MS, and MALDI-TOF/TOF to detect neuropeptides secreted in the crab. Cancer borealis Analytical chemistry. 2008;80(18):6949–58.

  89. Fälth M, Sköld K, Norrman M, Svensson M, Fenyö D, Andren PE. SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics. 2006;5(6):998–1005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R37 EB003320 (Robert T. Kennedy), NIH T32 grant DA007268 (Alexander G. Zestos), and Seed Funding for Innovative Projects in Neuroscience on behalf of Michigan Brain Initiative Working Group (MiBrain Initiative).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Kennedy.

Additional information

Guest Editors: Robert E. Stratford, Nimita Dave, and Richard F. Bergstrom

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zestos, A.G., Kennedy, R.T. Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical Monitoring. AAPS J 19, 1284–1293 (2017). https://doi.org/10.1208/s12248-017-0114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0114-4

Key Words

Navigation