Skip to main content
Log in

Characterization of Apolipoprotein C3 (Apo C3) LNA/DNA Impurities and Degradation Products by LC-MS/MS

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

Apolipoprotein C3 (Apo C3) LNA/DNA gapmer was evaluated under various stress and formulation conditions for the purpose of its development as a potential biotherapeutic for low density lipoprotein (LDL) lowering. Using ion-pairing (IP) reversed-phase (RP) liquid chromatography ultra-high resolution (UHR) tandem mass spectrometry (IP-RPLC-MS/MS), a combination of accurate mass measurements and collision-induced dissociation enabled in-depth characterization of Apo C3 LNA/DNA oligonucleotide, in particular the inherent impurities following synthesis and degradation products after exposure to stress conditions. In this study, oligonucleotide samples were stressed under different pH and UV exposure conditions. The primary impurities in Apo C3 LNA/DNA were losses of nucleotide moieties from both the 5′- and 3′-terminus leading to n-1, n-2, etc. species. Desulfurization and depurination were observed in Apo C3 LNA/DNA after a week under UV light stress conditions at low pH. Guanine oxidation and dimerization were the primary degradation products detected under UV light exposure for 1 week at high pH. The effect of antioxidants on the levels of these degradation products was evaluated under neutral pH conditions. In the presence of all antioxidants, levels of guanine oxidation and desulfurization under tested conditions were the same as those in the unstressed sample, except for sodium ascorbate. The thorough understanding of the Apo C3 LNA/DNA oligonucleotide structure, its impurities, and degradation products laid the foundation for the successful formulation development of this novel biotherapeutic modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Orum H, Wengel J. Locked nucleic acids: a promising molecular family for gene-function analysis and antisense drug development. Curr Opin Mol Ther. 2001;3(3):239–43.

    CAS  PubMed  Google Scholar 

  2. Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Ørum H, Koch T, Wahlestedt C. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33(1):439–47.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Erdmann VA. Barciszewski J. Diagnosis and Treatment of Diseases: DNA and RNA nanobiotechnologies in medicine; 2013.

    Google Scholar 

  4. Fattal E, Bochot A. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm. 2008;364(2):237–48.

    Article  CAS  PubMed  Google Scholar 

  5. Julliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 2009;6(3):686–95.

    Article  Google Scholar 

  6. Mook OR, Baas F, de Wissel MB, Fluiter K. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther. 2007;6(3):833–43.

    Article  CAS  PubMed  Google Scholar 

  7. Grünweller A, Hartmann RK. Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs. 2007;21(4):235–43.

    Article  PubMed  Google Scholar 

  8. Srinivasan SK, Iversen P. Review of in vivo pharmacokinetics and toxicology of phosphorothioate oligonucleotides. J Clin Lab Anal. 1995;9(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson C. O′Keefe AD, building oligonucleotide therapeutics using nonnatural chemistries. Curr Opin Chem Biol. 2006;10(6):607–15.

    Article  CAS  PubMed  Google Scholar 

  10. Ravikumar VT, Kumar RK, Capaldi DC, Cole DL. Synthesis of high quality phosphorothioate oligonucleotides as antisense drugs. Use of I-linker in the elimination of 3′-terminal phosphorothioate monoesters. Nucleosides Nucleotides Nucleic Acids. 2003;5:1421–5.

    Article  Google Scholar 

  11. Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002;30(9):1911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caron S, Staels B. Apolipoprotein CIII: a link between hypertriglyceridemia and vascular disfunction? Circ Res. 2008;103(12):1348–50.

    Article  CAS  PubMed  Google Scholar 

  13. Wagner TM, Nair V, Guymon R, Pomerantz SC, Crain PF, Davis DR, McCloskey JA. A novel method for sequence placement of modified nucleotides in mixtures of transfer RNA. Nucleic Acids Symp Ser. 2004;48:263–4.

    Article  Google Scholar 

  14. Davis DL. O′Brie EP, Bentzley CM, Analysis of the degradation of oligonucleotide strands during the freezing/thawing processes using MALDI-MS. Anal Chem. 2000;72(20):5092–6.

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki T, Ohsumi S, Makino K. Mechanistic studies on depurination and apurinic chain breakage in oligonucleotides. Nucleic Acids Res. 1994;22(23):4997–5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krotz AH, Mehta RC, Hardee GE. Peroxide-mediated desulfurization of phosphorothioate oligonucleotides and its prevention. J Pharm Sci. 2005;94(2):341–52.

    Article  CAS  PubMed  Google Scholar 

  17. Cadet J, Ravant J-L, Martinez GR, Medeiros MH, Di Mascio P. Singlet oxygen oxidation of isolated and cellular DNA: product formation and mechanistic insights. Photochem Photobiol. 2006;82(5):1219–25.

    Article  CAS  PubMed  Google Scholar 

  18. Cadet J, Douki T, Ravanat JC. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Accounts of Chem Research. 2007;41(8):1075–83.

    Article  Google Scholar 

  19. Seltow RB. Cyclobutane-type pyrimidine dimers in polynucleotides. Science. 1966;153(3734):379–86.

    Article  Google Scholar 

  20. Tost J, Gut IG. DNA analysis by mass spectrometry-past, present and future. J Mass Spectrom. 2006;41(8):981–95.

    Article  CAS  PubMed  Google Scholar 

  21. Gilar M, Fountain KG, Budman Y, Neue UD, Yardley KR, Rainville PD, Russell RJ 2nd, Gebler JC. Ion-pair reversed-phase high-performance liquid chromatography analysis of oligonucleotides: retention prediction. J Chromatogr A. 2002;958(1–2):167–82.

    Article  CAS  PubMed  Google Scholar 

  22. Levin DS, Shepperd BT, Gruenloh CJ. Combining ion pairing agents for enhanced analysis of oligonucleotide therapeutics by reversed phase-ion pairing ultra performance liquid chromatography (UPLC). J Chromatogr B. 2011;879(19):1587–95.

    Article  CAS  Google Scholar 

  23. Apffel A, Chakel JA, Fischer S, Lichtenwalter K, Hancock WS. Analysis of oligonucleotides by HPLC-electrospray ionization mass spectrometry. Anal Chem. 1997;69(7):1320–5.

    Article  CAS  PubMed  Google Scholar 

  24. Premstaller A, Oberacher H, Huber CG. High-performance liquid chromatography-electrospray ionization mass spectrometry of single- and double-stranded nucleic acids using monolithic capillary columns. Anal Chem. 2000;72(16):4386–93.

    Article  CAS  PubMed  Google Scholar 

  25. Holzl G, Oberacher H, Pitsch S, Stutz A, Huber CG. Analysis of biological and synthetic ribonucleic acids by liquid chromatography-mass spectrometry using monolithic capillary columns. Anal Chem. 2005;77(2):673–80.

    Article  PubMed  Google Scholar 

  26. Nyakas A, Stucki S, Schurch S. Tandem mass spectrometry of modified and platinated oligoribonucleotides. J Am Soc Mass Spectrom. 2011;22(5):875–87.

    Article  CAS  PubMed  Google Scholar 

  27. Zou Y, Tiller P, Chen IW, Beverly M, Hochman J. Metabolite identification of small interfering RNA duplex by high-resolution accurate mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(12):1871–81.

    Article  CAS  PubMed  Google Scholar 

  28. Huang T, Kharlamova A, Liu J, McLuckey SA. Ion trap collision-induced dissociation of multiply deprotonated RNA: c/y-ions versus (a-B)/w-ions. J Am Soc Mass Spectrom. 2008;19(12):1832–40.

    Article  CAS  PubMed  Google Scholar 

  29. Huang T, Kharlamova A, McLuckey SA. Ion trap collision-induced dissociation of locked nucleic acids. J Am Soc Mass Spectrom. 2010;21(1):144–53.

    Article  CAS  PubMed  Google Scholar 

  30. Lin ZJ, Li W, Dai G. Application of LC-MS for quantitative analysis and metabolite identification of therapeutic oligonucleotides. J Pharm Biomed Anal. 2007;44(2):330–41.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Marshall AG. A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom. 1998;9(3):225–33.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Wan KX, Ramanathan R, Taylor JS, Gross ML. Structure and fragmentation mechanisms of isomeric T-rich oligodeoxynucleotides: a comparison of four tandem mass spectrometric methods. J Amer Soc Mass Spectrom. 1998;9(7):683–91.

    Article  CAS  Google Scholar 

  33. Yen G-C, Duh P-D, Tsai H-L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79(3):307–13.

    Article  CAS  Google Scholar 

  34. Vesnaver G, Chang C, Eisenberg M, Grollmann AP, Breslauer KJ. Influence of abasic and anucleosidic sites on the stability, conformation, and melting behavior of a DNA duplex: correlations of thermodynamic and structural data. Proc Natl Acad Sci. 1989;86:3614–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamamoto T, Nakatani M, Narukawa K, Obika S. Antisense drug discovery and development. Future Med Chem. 2011;3(3):339–65.

    Article  CAS  PubMed  Google Scholar 

  36. Schuette JM, Srivatsa GS, Cole DL. Development and validation of a method for routine base composition analysis of phosphorothioate oligonucleotides. J Pharm Biomed Anal. 1994;12(11):1345–53.

    Article  CAS  PubMed  Google Scholar 

  37. Donbrow M. Stability of the polyoxyethylene chain. Surfactant Sci Series. 1987;23:1011–72.

    CAS  Google Scholar 

  38. McTigue PM, Peterson RJ, Kahn JD. Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation. Biochemistry. 2004;43(18):5388–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Friese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friese, O.V., Sperry, J.B., He, Y. et al. Characterization of Apolipoprotein C3 (Apo C3) LNA/DNA Impurities and Degradation Products by LC-MS/MS. AAPS J 19, 1735–1744 (2017). https://doi.org/10.1208/s12248-017-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0088-2

KEY WORDS

Navigation