Skip to main content

Advertisement

Log in

Human Health Relevance of Pharmaceutically Active Compounds in Drinking Water

  • Research Article
  • Theme: Pharmaceuticals and Personal Care Products in the Environment
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In Canada, as many as 20 pharmaceutically active compounds (PhACs) have been detected in samples of treated drinking water. The presence of these PhACs in drinking water raises important questions as to the human health risk posed by their potential appearance in drinking water supplies and the extent to which they indicate that other PhACs are present but have not been detected using current analytical methods. Therefore, the goal of the current investigation was to conduct a screening-level assessment of the human health risks posed by the aquatic release of an evaluation set of 335 selected PhACs. Predicted and measured concentrations were used to estimate the exposure of Canadians to each PhAC in the evaluation set. Risk evaluations based on measurements could only be performed for 17 PhACs and, of these, all were found to pose a negligible risk to human health when considered individually. The same approach to risk evaluation, but based on predicted rather than measured environmental concentrations, suggested that 322 PhACs of the evaluation set, when considered individually, are expected to pose a negligible risk to human health due to their potential presence in drinking waters. However, the following 14 PhACs should be prioritized for further study: triiodothyronine, thyroxine, ramipril and its metabolite ramiprilat, candesartan, lisinopril, atorvastatin, lorazepam, fentanyl, atenolol, metformin, enalaprilat, morphine, and irbesartan. Finally, the currently available monitoring data for PhACs in Canadian surface and drinking waters was found to be lacking, irrespective of whether their suitability was assessed based on risk posed, predicted exposure concentrations, or potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADI:

Acceptable daily intake

ATC:

Anatomical therapeutic chemical

CCSA:

Canadian Centre on Substance Abuse

DPD:

Drug Product Database

LOTD:

Lowest oral therapeutic dose

MEC:

Measured exposure concentration

MOE:

Margin of exposure

MSDS:

Material safety data sheets

NSRL:

No significant risk levels

OECD:

Organization for Economic Co-operation and Development

OEL:

Occupational exposure limits

p-ADI:

Provisional acceptable daily intake values

PEC:

Predicted exposure concentration

PhAC:

Pharmaceutically active compounds

PNEC:

Predicted no effect concentrations

RCMP:

Royal Canadian Mounted Police

STP:

Sewage treatment plants

TDI:

Tolerable daily intake

REFERENCES

  1. Daughton CG. Pharmaceutical ingredients in drinking water: overview of occurrence and significance of human exposure. In: Halden RU, editor. Contaminants of emerging concern in the environment: ecological and human health considerations. Washington, DC: American Chemical Society; 2010.

    Google Scholar 

  2. MDH. Human health-based water guidance table. St. Paul: Minnesota Department of Health; 2013.

    Google Scholar 

  3. WHO. Pharmaceuticals in drinking-water: public health and environment water, sanitation, hygiene and health. Geneva: World Health Organization; 2011.

    Google Scholar 

  4. Cunningham VL, Binks SP, Olson MJ. Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regul Toxicol Pharmacol. 2009;53(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang QQ, Zhao JL, Ying GG, Liu YS, Pan CG. Emission estimation and multimedia fate modelling of seven steroids at the river basin scale in China. Environ Sci Technol. In press doi:10.1021/es501226h.

  6. Khan U, Nicell J. Assessment of the aquatic release and relevance of selected endogenous chemicals: androgens, thyroids and their in vivo metabolites. In: Halden RU, editor. Contaminants of emerging concern in the environment: ecological and human health considerations. Washington, DC: American Chemical Society; 2010.

    Google Scholar 

  7. Cardoso O, Porcher J-M, Sanchez W. Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere. 2014;115:20–30.

    Article  CAS  PubMed  Google Scholar 

  8. Khan U, Nicell J. Assessing the risk of exogenously consumed pharmaceuticals in land-applied human urine. Water Sci Technol. 2010;62(6):1335–45.

    Article  CAS  PubMed  Google Scholar 

  9. Venkatesan A, Halden RU. Wastewater treatment plants as chemical observatories to forecast ecological and human health risks of manmade chemicals. Sci Rep. 2014;4:3731. doi:10.1038/srep03731.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Langford KH, Thomas KV. Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environ Int. 2009;35(5):766–70.

    Article  CAS  PubMed  Google Scholar 

  11. Cook SM, VanDuinen B, Love NG, Skerlos SJ. Life cycle comparison of environmental emissions from three disposal options for unused pharmaceuticals. Environ Sci Technol. 2012;46(10):5535–41.

    Article  CAS  PubMed  Google Scholar 

  12. Khan U, Nicell J. Refined sewer epidemiology mass balances and their application to heroin, cocaine and ecstasy. Environ Int. 2011;37(7):1236–52.

    Article  CAS  PubMed  Google Scholar 

  13. Khan U, Nicell J. Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol. Sci Total Environ. 2012;421–422:144–62.

    Article  PubMed  Google Scholar 

  14. Besse J-P, Kausch-Barreto C, Garric J. Exposure assessment of pharmaceuticals and their metabolites in the aquatic environment: application to the French situation and preliminary prioritization. Hum Ecol Risk Assess. 2008;14(4):665–95.

    Article  CAS  Google Scholar 

  15. Bull RJ, Crook J, Whittaker M, Cotruvo JA. Therapeutic dose as the point of departure in assessing potential health hazards from drugs in drinking water and recycled municipal wastewater. Regul Toxicol Pharmacol. 2011;60(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  16. Caldwell DJ, Mastrocco F, Nowak E, Johnston J, Yekel H, Pfeiffer D, et al. An assessment of potential exposure and risk from estrogens in drinking water. Environ Health Perspect. 2010;118(3):338–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cunningham VL, Perino C, D’Aco VJ, Hartmann A, Bechter R. Human health risk assessment of carbamazepine in surface waters of North America and Europe. Regul Toxicol Pharmacol. 2010;56(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  18. Schwab BW, Hayes EP, Fiori JM, Mastrocco FJ, Roden NM, Cragin D, et al. Human pharmaceuticals in US surface waters: a human health risk assessment. Regul Toxicol Pharmacol. 2005;42(3):296–312.

    Article  CAS  PubMed  Google Scholar 

  19. Bruce GM, Pleus RC, Snyder SA. Toxicological relevance of pharmaceuticals in drinking water. Environ Sci Technol. 2010;44(14):5619–26.

    Article  CAS  PubMed  Google Scholar 

  20. Kostich MS, Lazorchak JM. Risks to aquatic organisms posed by human pharmaceutical use. Sci Total Environ. 2008;389(2–3):329–39.

    Article  CAS  PubMed  Google Scholar 

  21. Sedlak DL, Pinkston K, Huang C-H. Occurrence survey of pharmaceutically active compounds. Alexandria: AWWA Research Foundation; 2005.

    Google Scholar 

  22. Kumar A, Xagoraraki I. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in US surface and finished drinking waters: a proposed ranking system. Sci Total Environ. 2010;408(23):5972–89.

    Article  CAS  PubMed  Google Scholar 

  23. Watts C, Maycock D, Crane M, Fawell J, Goslan E. Desk based review of current knowledge on pharmaceuticals in drinking water and estimation of potential levels. London: Watts and Crane Associates; 2007.

    Google Scholar 

  24. de Jongh CM, Kooij PJF, de Voogt P, ter Laak TL. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water. Sci Total Environ. 2012;427–428:70–7.

    Article  PubMed  Google Scholar 

  25. OECD. OECD health data. Paris: Organisation for Economic Co-operation and Development; 2013.

    Google Scholar 

  26. Roos V, Gunnarsson L, Fick J, Larsson DGJ, Rudén C. Prioritising pharmaceuticals for environmental risk assessment: towards adequate and feasible first-tier selection. Sci Total Environ. 2012;421:102–10.

    Article  PubMed  Google Scholar 

  27. Brogan IMS. Canadian compuscript audit database. Montreal: IMS Brogan; 2007.

    Google Scholar 

  28. Brogan IMS. Canadian drug store and hospital purchases audit database. Montreal: IMS Brogan; 2007.

    Google Scholar 

  29. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol. 2009;43(3):597–603.

    Article  CAS  PubMed  Google Scholar 

  30. INCB. Psychotropic substances—2013 report. Vienna: International Narcotics Control Board; 2013.

    Google Scholar 

  31. Health Canada. Drug product database (DPD). Ottawa: Health Canada; 2013.

    Google Scholar 

  32. Lamshöft M, Grobe N, Spiteller M. Picomolar concentrations of morphine in human urine determined by dansyl derivatization and liquid chromatography–mass spectrometry. J Chromatogr B. 2011;879(13):933–7.

    Article  Google Scholar 

  33. Helwig K, Hunter C, MacLachlan J, McNaughtan M, Roberts J, et al. Micropollutant point sources in the built environment: identification and monitoring of priority pharmaceutical substances in hospital effluents. J Environ Anal Toxicol. 2014;3:177.

    Google Scholar 

  34. Riaz ul Haq M, Metcalfe C, Li H, Parker W. Discharge of pharmaceuticals into municipal sewers from hospitals and long-term care facilities. Water Qual Res J Can. 2012;47(2):140–52.

    Article  Google Scholar 

  35. STOWA. Inventarisatie van emissie van geneesmiddelen uit zorginstellingen. ZORG, Deel C. Amersfoor: Stichting Toegepast Onderzoek Waterbeheer (STOWA); 2011.

  36. Miljøstyrelsen. Begrænsning af humane lægemiddelrester og antibiotikaresistens i spildevand med fokus på reduktion ved kilden. DHI og B. Halling-Sørensen; 2007.

  37. Le Corre KS, Ort C, Kateley D, Allen B, Escher BI, Keller J. Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. Environ Int. 2012;45:99–111.

    Article  PubMed  Google Scholar 

  38. Straub JO, Flückiger A. Proposal for an environmental quality standard according to the EU Water Framework Directive for the Anti-Hyperlipidaemic Pharmaceutical Bezafibrate. Poster presented at 20th SETAC Europe Annual Meeting: Seville; 2010.

  39. Boyd GR, Reemtsma H, Grimm DA, Mitra S. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci Total Environ. 2003;311(1–3):135–49.

    Article  CAS  PubMed  Google Scholar 

  40. Chen M, Ohman K, Metcalfe C, Ikonomou MG, Amatya PL, Wilson J. Pharmaceuticals and endocrine disruptors in wastewater treatment effluents and in the water supply system of Calgary, Alberta, Canada. Water Qual Res J Can. 2006;41(4):351–64.

    CAS  Google Scholar 

  41. Garcia-Ac A, Segura PA, Gagnon C, Sauvé S. Determination of bezafibrate, methotrexate, cyclophosphamide, orlistat and enalapril in waste and surface waters using on-line solid-phase extraction liquid chromatography coupled to polarity-switching electrospray tandem mass spectrometry. J Environ Monit. 2009;11(4):830–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kleywegt S, Pileggi V, Yang P, Hao C, Zhao X, Rocks C, et al. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—occurrence and treatment efficiency. Sci Total Environ. 2011;409(8):1481–8.

    Article  CAS  PubMed  Google Scholar 

  43. MDDEP. Résultats du suivi des produits pharmaceutiques et de soins personnels ainsi que des hormones dans des eaux usées, de l’eau de surface et de l’eau potable au Québec (in French). Quebec City: MDDEP; 2011. Available at: http://www.mddelcc.gouv.qc.ca/eau/potable/prod-pharma-eau2003-2009.pdf.

    Google Scholar 

  44. Metcalfe CD, Chu S, Judt C, Li H, Oakes KD, Servos MR, et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ Toxicol Chem. 2010;29(1):79–89.

    Article  CAS  PubMed  Google Scholar 

  45. Tabe S, Yang P, Zhao X, Hao C, Seth R, Schweitzer L, et al. Occurrence and removal of PPCPs and EDCs in the Detroit river watershed. Water Pract Technol. 2010. doi:10.2166/wpt.2010.015.

    Google Scholar 

  46. Bouchard M, Morselli C, Gallupe O, Easton S, Descormiers K, Turcotte M, et al. Estimating the size of the Canadian illicit METH and MDMA markets: a multi-method approach. Ottawa: Public Safety Canada; 2012.

    Google Scholar 

  47. WHO. ATC classification system. Oslo: WHO Collaborating Centre for Drug Statistics Methodology; 2013.

    Google Scholar 

  48. Fu W, Franco A, Trapp S. Methods for estimating the bioconcentration factor of ionizable organic chemicals. Environ Toxicol Chem. 2009;28(7):1372–9.

    Article  CAS  PubMed  Google Scholar 

  49. Travis CC, Arms AD. Bioconcentration of organics in beef, milk, and vegetation. Environ Sci Technol. 1988;22:271–4.

    Article  CAS  PubMed  Google Scholar 

  50. Statistics Canada. CANSIM database. Ottawa: Statistic Canada; 2013.

    Google Scholar 

  51. CCSA. Misuse of opioids in Canadian communities—April Bulletin. Ottawa: Canadian Centre on Substance Abuse; 2013.

    Google Scholar 

  52. RCMP. Report on the illicit drug situation in Canada—2009. Ottawa: Royal Canadian Mounted Police; 2010.

    Google Scholar 

  53. Environment Canada. The municipal water and wastewater survey. Ottawa: Environment Canada; 2011.

    Google Scholar 

  54. Lehner B, Nicell J, Grill G, Khan U, Ariwi J. Down-the-drain geospatial fate model for substances in consumer products. Report Submitted by McGill University to Health Canada; 2013.

  55. Environment Canada. Data sources and methods: municipal wastewater treatment indicator. Ottawa: Environment Canada; 2012.

    Google Scholar 

  56. RIVM. Evaluation of the model simple treat. Bilthoven: National Institute for Public Health and the Environment (RIVM); 2013.

    Google Scholar 

  57. Franco A, Fu W, Trapp S. The effect of pH on the sorption of ionizable chemicals: effects and modeling advances. Environ Toxicol Chem. 2008;28:458–64.

    Article  PubMed  Google Scholar 

  58. ECETOC. Environmental risk assessment of ionisable compounds. Brussels: European Centre for Ecotoxicology and Toxicology of Chemicals; 2013.

    Google Scholar 

  59. Lacy CF, Armstrong LL, Goldman MP, Lance LL. Drug information handbook. 20th ed. Hudson: Lexi-Comp, Inc.; 2011.

    Google Scholar 

  60. www.UptoDate.com. UpToDate, Waltham, MA; 2013.

  61. NIOSH. List of antineoplastic and other hazardous drugs in healthcare settings. Cincinnati: National Institute for Occupational Safety and Health; 2012.

    Google Scholar 

  62. Binks SP. Occupational toxicology and the control of exposure to pharmaceutical agents at work. Occup Med. 2003;53:363–70.

    Article  CAS  Google Scholar 

  63. Christensen FM. Pharmaceuticals in the environment—a human risk. Regul Toxicol Pharmacol. 1998;28(3):212–21.

    Article  CAS  PubMed  Google Scholar 

  64. California EPA. Proposition 65 safe harbor levels: no significant risk levels for carcinogens and maximum allowable dose levels for chemicals causing reproductive toxicity. Sacramento: California EPA; 2012.

    Google Scholar 

  65. Gold L. The Carcinogenic Potency Project (CPDB). Berkley: United States; 2011.

  66. Health Canada. Federal contaminated site risk assessment in Canada. Part 1: guidance on human health preliminary quantitative risk assessment. Ottawa: Health Canada; 2013.

    Google Scholar 

  67. Weissbrodt D, Kovalova L, Ort C, Pazhepurackel V, Moser R, Hollender J, et al. Mass flows of X-ray contrast media and cytostatics in hospital wastewater. Environ Sci Technol. 2009;43(13):4810–7.

    Article  CAS  PubMed  Google Scholar 

  68. FDA. Drugs@FDA. Silve Spring, Maryland: 2013.

  69. Laurenson JP, Bloom RA, Page S, Sadrieh N. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data. AAPS J. 2014;16(2):299–310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Khan U, Nicell JA. Contraceptive options and their associated estrogenic environmental loads: relationships and trade-offs. PLoS ONE. 2014;9(3):e92630. doi:10.1371/journal.pone.009263.0.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Khan U, van Nuijs ALN, Li J, Maho W, Du P, Li K, et al. Application of a sewage-based approach to assess the use of ten illicit drugs in four Chinese megacities. Sci Total Environ. 2014;487:710–21.

    Article  CAS  PubMed  Google Scholar 

  72. Oosterhuis M, Sacher F, ter Laak TL. Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data. Sci Total Environ. 2013;442:380–8.

    Article  CAS  PubMed  Google Scholar 

  73. Straub J. An environmental risk assessment for human-use trimethoprim in European surface waters. Antibiotics. 2013;2(1):115–62. doi:10.3390/antibiotics2010115.

    Article  CAS  Google Scholar 

  74. Shutt DA, Cox RI. Steroid and phyto-oestrogen binding to sheep uterine receptors in vitro. J Endocrinol. 1972;52:299–310.

    Article  CAS  PubMed  Google Scholar 

  75. Trudeau VL, Heyne B, Blais JM, Temussi F, Atkinson SK, Pakdel F, et al. Lumiestrone is photochemically derived from estrone and may be released to the environment without detection. FMICB. 2011;2(Article 83):1–13.

    Google Scholar 

  76. Svanfelt J, Eriksson J, Kronberg L. Analysis of thyroid hormones in raw and treated waste water. J Chromatogr A. 2010;1217(43):6469–74.

    Article  CAS  PubMed  Google Scholar 

  77. Howard PH, Muir DCG. Identifying new persistent and bioaccumulative organics among chemicals in commerce II: pharmaceuticals. Environ Sci Techol. 2011;45(16):6938–46.

    Article  CAS  Google Scholar 

  78. ANSES. Campagne nationale d’occurrence des résidus de médicaments dans les eaux destinées à la consommation humaine. Maisons-Alfort: Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail; 2011.

    Google Scholar 

  79. Ericson JF, Smith RM, Roberts G, Hannah B, Hoeger B, Ryan J. Experiences with the OECD 308 transformation test: a human pharmaceutical perspective. Integra Environ Assess Manag. 2014;10(1):114–24.

    Article  CAS  Google Scholar 

  80. Bayer A, Asner R, Schüssler W, Kopf W, Weiß K, Sengl M, et al. Behavior of sartans (antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for the aquatic environment. Environ Sci Pollut Res. In press. doi:10.1007/s11356-014-3060-z.

  81. Kostich MS, Batt AL, Lazorchak JM. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the USA and implications for risk estimation. Environ Pollut. 2014;184:354–9.

    Article  CAS  PubMed  Google Scholar 

  82. Health Canada. Uses of antimicrobials in food animals in Canada: impact on resistance and human health. Ottawa: Health Canada; 2002.

    Google Scholar 

  83. Gros M, Rodriguez-Mozaz S, Barceló D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A. 2013;1248:104–21.

    Article  Google Scholar 

  84. Vulliet E, Cren-Olive C, Grenier-Loustalot M-F. Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environ Chem Lett. 2011;9:103–14.

    Article  CAS  Google Scholar 

  85. Rodayan A, Majewsky M, Yargeau V. Impact of approach used to determine removal levels of drugs of abuse during wastewater treatment. Sci Total Environ. 2014;487:731–9.

    Article  CAS  PubMed  Google Scholar 

  86. Huerta-Fontela M, Galceran MT, Ventura F. Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant. Environ Sci Technol. 2008;42(18):6809–16.

    Article  CAS  PubMed  Google Scholar 

  87. van der Aa M, Bijlsma L, Emke E, Dijkman E, van Nuijs ALN, van de Ven B, et al. Risk assessment for drugs of abuse in the Dutch watercycle. Water Res. 2013;47(5):1848–57.

    Article  PubMed  Google Scholar 

  88. Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013;47(17):6475–87.

    Article  CAS  PubMed  Google Scholar 

  89. Fischer B, Jones W, Rehm J. Trends and changes in prescription opioid analgesic dispensing in Canada 2005–2012: an update with a focus on recent interventions. BMC Health Serv Res. 2014;14(1):90. http://www.biomedcentral.com/1472-6963/14/90.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Boxall ABA, Monteiro SC, Fussell R, Williams RJ, Bruemer J, Greenwood R, et al. Targeted monitoring for human pharmaceuticals in vulnerable source and final waters. London: Drinking Water Inspectorate; 2012.

    Google Scholar 

  91. Kim M, Guerra P, Shah A, Parsa M, Alaee M, Smyth SA. Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant. Water Sci Technol. 2014;69(11):2221–9.

    Article  CAS  PubMed  Google Scholar 

  92. Lowe CJ. Pharmaceuticals, personal care products, illicit drugs and their metabolites in screened municipal wastewaters. Master’s Thesis. Victoria: University of Victoria; 2011.

  93. Derksen A, ter Laak T. Human pharmaceuticals in the water cycle. Netherlands: Joint STOWA and KWR Report; 2013.

    Google Scholar 

  94. Yargeau V, Taylor B, Li H, Rodayan A, Metcalfe CD. Analysis of drugs of abuse in wastewater from two Canadian cities. Sci Total Environ. 2014;487:722–30.

    Article  CAS  PubMed  Google Scholar 

  95. Hummel D, Löffler D, Fink G, Ternes TA. Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry. Environ Sci Technol. 2006;40(23):7321–8.

    Article  CAS  PubMed  Google Scholar 

  96. Huerta-Fontela M, Galceran MT, Ventura F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res. 2011;45:1432–42.

    Article  CAS  PubMed  Google Scholar 

  97. EMA. Questions and answers on 'Guideline on the environmental risk assessment of medicinal products for human use'. London: European Medicine Agency; 2011.

    Google Scholar 

  98. NHTSA. Cocaine: drug profile. Washington, DC: National Highway Traffic Safety Administration; 2013.

    Google Scholar 

  99. Chari BP, Halden RU. Predicting the concentration range of unmonitored chemicals in wastewater-dominated streams and in run-off from biosolids-amended soils. Sci Total Environ. 2012;440:314–20.

    Article  CAS  PubMed  Google Scholar 

  100. Boleda MR, Huerta-Fontela M, Ventura F, Galceran MT. Evaluation of the presence of drugs of abuse in tap waters. Chemosphere. 2011;84(11):1601–7.

    Article  CAS  Google Scholar 

  101. Block JH, BealeWilson JM. Gisvold’s textbook of organic medicinal and pharmaceutical chemistry. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  102. Verho M, Luck C, Shelter WJ, Rangoonwala B, Bender N. Pharmacokinetics, metabolism and biliary and urinary excretion of oral ramipril in man. Curr Med Res Opin. 1995;13:264–73.

    Article  CAS  PubMed  Google Scholar 

  103. Anderson P. Perspectives on estrogen sources and effects in us surface waters. Presentation given at CropLife America & RISE 2013 Spring Conference. Crystal City: Virginia; 2013.

  104. Government of Canada. Canadian integrated program for antimicrobial resistance surveillance (CIPARS) 2009 Annual Report. Guelph: Public Health Agency of Canada; 2013.

    Google Scholar 

  105. Handa A, Webster P. Industry-led committee urges delay in closing loophole allowing import of unapproved antibiotics for animals. CMAJ. 2009;180:914–6.

    Article  PubMed Central  PubMed  Google Scholar 

  106. Daughton CG. The Matthew effect and widely prescribed pharmaceuticals lacking environmental monitoring: case study of exposure-assessment vulnerability. Sci Total Environ. 2014;466:315–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Nicell.

Additional information

Guest Editors: James P. Laurenson, Raanan A. Bloom, and Nakissa Sadrieh

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 14337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, U., Nicell, J. Human Health Relevance of Pharmaceutically Active Compounds in Drinking Water. AAPS J 17, 558–585 (2015). https://doi.org/10.1208/s12248-015-9729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9729-5

KEY WORDS

Navigation