Skip to main content
Log in

Influences of Organic Cation Transporter Polymorphisms on the Population Pharmacokinetics of Metformin in Healthy Subjects

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

This study investigated the effects of genetic polymorphisms in organic cation transporter (OCT) genes, such as OCT1-3, OCTN1, MATE1, and MATE2-K, on metformin pharmacokinetics. Of particular interest was the influence of genetic polymorphisms as covariates on the variability in the population pharmacokinetics (PPK) of metformin using nonlinear mixed effects modeling (NONMEM). In a retrospective data analysis, data on subjects from five independent metformin bioequivalence studies that used the same protocol were assembled and compared with 96 healthy control subjects who were administered a single oral 500 mg dose of metformin. Genetic polymorphisms of OCT2-808 G > T and OCTN1-917C > T had a significant (P < 0.05) effect on metformin pharmacokinetics, yielding a higher peak concentration with a larger area under the serum time–concentration curve. The values obtained were 102 ± 34.5 L/h for apparent oral clearance (CL/F), 447 ± 214 L for volume of distribution (V d/F), and 3.1 ± 0.9 h for terminal half-life (mean ± SD) by non-compartmental analysis. The NONMEM method gives similar results. The metformin serum levels were obtained by setting the one-compartment model to a first-order absorption and lag time. In the PPK model, the effects of OCT2-808 G > T and OCTN1-917C > T variants on the CL/F were significant (P < 0.001 and P < 0.05, respectively). Thus, genetic variants of OCTN1-917C > T, along with OCT2-808 G > T genetic polymorphisms, could be useful in titrating the optimal metformin dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334(9):574–9.

    Article  PubMed  CAS  Google Scholar 

  2. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006;29(2):254–8.

    Article  PubMed  Google Scholar 

  3. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–5.

    Article  PubMed  Google Scholar 

  4. Yin OQ, Tomlinson B, Chow MS. Variability in renal clearance of substrates for renal transporters in Chinese subjects. J Clin Pharmacol. 2006;46(2):157–63.

    Article  PubMed  CAS  Google Scholar 

  5. Leabman MK, Giacomini KM. Estimating the contribution of genes and environment to variation in renal drug clearance. Pharmacogenetics. 2003;13(9):581–4.

    Article  PubMed  CAS  Google Scholar 

  6. Chen L, Takizawa M, Chen E, Schlessinger A, Segenthelar J, Choi JH, et al. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J Pharmacol Exp Ther. 2010;335(1):42–50.

    Article  PubMed  CAS  Google Scholar 

  7. Chen Y, Li S, Brown C, Cheatham S, Castro RA, Leabman MK, et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenetics Genom. 2009;19(7):497–504.

    Article  Google Scholar 

  8. Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenetics Genom. 2010;20(11):687–99.

    Article  CAS  Google Scholar 

  9. Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet. 2009;54(1):40–6.

    Article  PubMed  CAS  Google Scholar 

  10. Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics. 2008;9(4):415–22.

    Article  PubMed  CAS  Google Scholar 

  11. Shu Y, Brown C, Castro RA, Shi RJ, Lin ET, Owen RP, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther. 2008;83(2):273–80.

    Article  PubMed  CAS  Google Scholar 

  12. Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559–62.

    Article  PubMed  CAS  Google Scholar 

  13. Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009;86(3):299–306.

    Article  PubMed  CAS  Google Scholar 

  14. Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metabol Pharmacokinet. 2008;23(4):243–53.

    Article  Google Scholar 

  15. Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289(2):768–73.

    PubMed  CAS  Google Scholar 

  16. Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997;419(1):107–11.

    Article  PubMed  CAS  Google Scholar 

  17. Tamai I, Nakanishi T, Kobayashi D, China K, Kosugi Y, Nezu J, et al. Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol Pharm. 2004;1(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  18. Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol. 2010;298(4):F997–1005.

    Article  PubMed  CAS  Google Scholar 

  19. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol. 2007;74(2):359–71.

    Article  PubMed  CAS  Google Scholar 

  20. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenetics Genom. 2010;20(1):38–44.

    Article  CAS  Google Scholar 

  21. Choi JH, Yee SW, Ramirez AH, Morrissey KM, Jang GH, Joski PJ, et al. A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther. 2011;90(5):674–84.

    Article  PubMed  CAS  Google Scholar 

  22. Cho HY, Moon JD, Lee YB. Bioequivalence of Glycomin tablet to Glucophage tablet (Metformin HCl 500 mg). J Kor Pharmaceut Sci. 2002;32:223–9.

    CAS  Google Scholar 

  23. Beal SL, Sheiner LB. NONMEM user’s guide, part I. San Francisco: University of California at San Francisco; 1992.

    Google Scholar 

  24. Ludden TM, Beal SL, Sheiner LB. Comparison of the Akaike Information Criterion, the Schwarz criterion and the F test as guides to model selection. J Pharmacokinet Biopharm. 1994;22(5):431–45.

    Article  PubMed  CAS  Google Scholar 

  25. Hooker AC, Staatz CE, Karlsson MO. Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res. 2007;24(12):2187–97.

    Article  PubMed  CAS  Google Scholar 

  26. Jonsson EN, Karlsson MO. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Meth Programs Biomed. 1999;58(1):51–64.

    Article  CAS  Google Scholar 

  27. Urban TJ, Yang C, Lagpacan LL, Brown C, Castro RA, Taylor TR, et al. Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4). Pharmacogenetics Genom. 2007;17(9):773–82.

    Article  CAS  Google Scholar 

  28. Kang HJ, Song IS, Shin HJ, Kim WY, Lee CH, Shim JC, et al. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metabol Dispos. 2007;35(4):667–75.

    Article  CAS  Google Scholar 

  29. Toh DS, Koo SH, Limenta LM, Yee JY, Murray M, Lee EJ. Genetic variations of the SLC22A4 gene in Chinese and Indian populations of Singapore. Drug Metabol Pharmacokinet. 2009;24(5):475–81.

    Article  CAS  Google Scholar 

  30. Fukushima-Uesaka H, Maekawa K, Ozawa S, Komamura K, Ueno K, Shibakawa M, et al. Fourteen novel single nucleotide polymorphisms in the SLC22A2 gene encoding human organic cation transporter (OCT2). Drug Metabol Pharmacokinet. 2004;19(3):239–44.

    Article  CAS  Google Scholar 

  31. Itoda M, Saito Y, Maekawa K, Hichiya H, Komamura K, Kamakura S, et al. Seven novel single nucleotide polymorphisms in the human SLC22A1 gene encoding organic cation transporter 1 (OCT1). Drug Metabol Pharmacokinet. 2004;19(4):308–12.

    Article  Google Scholar 

  32. Chen Y, Teranishi K, Li S, Yee SW, Hesselson S, Stryke D, et al. Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenomics J. 2009;9(2):127–36.

    Article  PubMed  CAS  Google Scholar 

  33. Leabman MK, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, et al. Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics. 2002;12(5):395–405.

    Article  PubMed  CAS  Google Scholar 

  34. Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC, Stryke D, et al. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci U S A. 2003;100(10):5902–7.

    Article  PubMed  CAS  Google Scholar 

  35. Terada T, Inui K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol. 2008;75(9):1689–96.

    Article  PubMed  CAS  Google Scholar 

  36. Hong Y, Rohatagi S, Habtemariam B, Walker JR, Schwartz SL, Mager DE. Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol. 2008;48(6):696–707.

    Article  PubMed  CAS  Google Scholar 

  37. Bardin C, Nobecourt E, Larger E, Chast F, Treluyer JM, Urien S. Population pharmacokinetics of metformin in obese and non-obese patients with type 2 diabetes mellitus. Eur J Clin Pharmacol. 2012;68(6):961–8.

    Article  PubMed  CAS  Google Scholar 

  38. Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30(5):359–71.

    Article  PubMed  CAS  Google Scholar 

  39. Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol. 2002;13(4):866–74.

    PubMed  CAS  Google Scholar 

  40. Sambol NC, Chiang J, Lin ET, Goodman AM, Liu CY, Benet LZ, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol. 1995;35(11):1094–102.

    Article  PubMed  CAS  Google Scholar 

  41. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98.

    Article  PubMed  CAS  Google Scholar 

  42. Wright SH. Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol Appl Pharmacol. 2005;204(3):309–19.

    Article  PubMed  CAS  Google Scholar 

  43. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117(5):1422–31.

    Article  PubMed  CAS  Google Scholar 

  44. Wang ZJ, Yin OQ, Tomlinson B, Chow MS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenetics Genom. 2008;18(7):637–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) [No. 2011–0029209].

Competing Interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bok Lee.

Additional information

The first two authors contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, H., Cho, HY., Yoo, HD. et al. Influences of Organic Cation Transporter Polymorphisms on the Population Pharmacokinetics of Metformin in Healthy Subjects. AAPS J 15, 571–580 (2013). https://doi.org/10.1208/s12248-013-9460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9460-z

KEY WORDS

Navigation