Skip to main content
Log in

Relationships between Liposome Properties, Cell Membrane Binding, Intracellular Processing, and Intracellular Bioavailability

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Positive surface charge enhances liposome uptake into cells. Pegylation, used to confer stealth properties to enable in vivo applications of cationic liposomes, compromises internalization. The goal of this study was to determine the quantitative relationships between these two liposome properties (separately and jointly), liposomes binding to cell membrane, and the subsequent internalization and residence in intracellular space (referred to as intracellular bioavailability). The results, obtained in pancreatic Hs-766T cancer cells, revealed nonlinear and inter-dependent relationships, as well as substantial qualitative and quantitative differences. The proportionality constant K of intracellular and membrane-bound liposomes at equilibrium (i.e., I eq and B eq) showed a positive triphasic relationship with surface charge and a negative biphasic relationship with pegylation. Near-neutral liposomes showed little internalization of the membrane-bound moiety, increasing to a constant K value for medium charge liposomes (+15 to +35 mV zeta potential), followed by a further increase for highly charged liposomes (greater than or equal to +46 mV). The decline of pegylation with K value showed a breakpoint at 2%. The negative consequences of pegylation (%PEG) were partially offset by increasing charge (ZP). The best-fitting regression equations are: B eq = −1.36 × %PEG + 0.33 × ZP; I eq = −1.52 × %PEG + 0.34 × ZP. It suggested that 1% pegylation increase can be offset with 4 mV ZP. The differences are such that it may be possible to balance these parameters to simultaneously maximize the stealth property and intracellular bioavailability of cationic liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AUC:

Area-under-concentration-time curve

B and B eq :

Concentration of liposomes bound to cell membrane at time t and at equilibrium

CX-Y :

Cationic liposomes with X mol.% DOTAP and Y% pegylation

DAPI:

4′,6-Diamidino-2-phenylindole, dihydrochloride

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP:

1,2-Dioleoyl-3-trimethylammonium-propane

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

EC:

Initial extracellular concentration

EPR:

Enhanced permeability and retention

I and I eq :

Intracellular concentrations of liposomes at time t and at equilibrium

mPEG-DSPE:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

PBS:

Phosphate-buffered saline

PEG:

Polyethylene glycol

PEG-DSPE:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-carbamoyl-methoxypoly-ethylene glycol-2000

Rhod-DOPE:

DOPE-N-(lissamine rhodamine B sulfonyl) ammonium salt

TC and TCeq :

Total concentrations of cell-associated liposomes at time t and at equilibrium

T eq :

Time to reach equilibrium

ZP:

Zeta potential

REFERENCES

  1. Wang J, Lu Z, Wientjes MG, Au JL. Delivery of siRNA Therapeutics: Barriers and Carriers. AAPS J. 2010;12(4):492–503.

    Article  PubMed  CAS  Google Scholar 

  2. Fisher KD, Ulbrich K, Subr V, Ward CM, Mautner V, Blakey D, et al. A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther. 2000;7(15):1337–43.

    Article  PubMed  CAS  Google Scholar 

  3. Li B, Li S, Tan Y, Stolz DB, Watkins SC, Block LH, et al. Lyophilization of cationic lipid-protamine-DNA (LPD) complexes. J Pharm Sci. 2000;89(3):355–64.

    Article  PubMed  CAS  Google Scholar 

  4. Tseng YC, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev. 2009;61(9):721–31.

    Article  PubMed  CAS  Google Scholar 

  5. Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery. AAPS J. 2009;11(4):639–52.

    Article  PubMed  CAS  Google Scholar 

  6. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45.

    Article  PubMed  CAS  Google Scholar 

  7. Khalil IA, Kogure K, Futaki S, Harashima H. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem. 2006;281(6):3544–51.

    Article  PubMed  CAS  Google Scholar 

  8. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–8.

    Article  PubMed  CAS  Google Scholar 

  9. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36.

    Article  PubMed  CAS  Google Scholar 

  10. Dos Santos N, Allen C, Doppen AM, Anantha M, Cox KAK, Gallagher RC, et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta. 2007;1768(6):1367–77.

    Article  PubMed  Google Scholar 

  11. Kenworthy AK, Hristova K, Needham D, McIntosh TJ. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys J. 1995;68(5):1921–36.

    Article  PubMed  CAS  Google Scholar 

  12. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504.

    Article  PubMed  CAS  Google Scholar 

  13. Ma Z, Li J, He F, Wilson A, Pitt B, Li S. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun. 2005;330(3):755–9.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang Y, Anchordoquy TJ. The role of lipid charge density in the serum stability of cationic lipid/DNA complexes. Biochim Biophys Acta. 2004;1663(1–2):143–57.

    PubMed  CAS  Google Scholar 

  15. Porteous DJ, Dorin JR, McLachlan G, Davidson-Smith H, Davidson H, Stevenson BJ, et al. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 1997;4(3):210–8.

    Article  PubMed  CAS  Google Scholar 

  16. Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MCP. On the formulation of pH-sensitive long circulation times. Adv Drug Deliv Rev. 2004;56(7):947–65.

    Article  PubMed  CAS  Google Scholar 

  17. Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–26.

    Article  PubMed  CAS  Google Scholar 

  18. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95(8):4607–12.

    Article  PubMed  CAS  Google Scholar 

  19. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular-Permeability in A Human Tumor Xenograft - Molecular-Size Dependence and Cutoff Size. Cancer Res. 1995;55(17):3752–6.

    PubMed  CAS  Google Scholar 

  20. Duzgunes N, Nir S. Mechanisms and kinetics of liposome-cell interactions. Adv Drug Deliv Rev. 1999;40(1–2):3–18.

    Article  CAS  Google Scholar 

  21. Lee KD, Nir S, Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry. 1993;32(3):889–99.

    Article  PubMed  CAS  Google Scholar 

  22. Wrobel I, Collins D. Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim Biophys Acta. 1995;1235(2):296–304.

    Article  PubMed  Google Scholar 

  23. Qaddoumi MG, Ueda H, Yang J, Davda J, Labhasetwar V, Lee VHL. The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res. 2004;21(4):641–8.

    Article  PubMed  CAS  Google Scholar 

  24. Hinrichs WL, Mancenido FA, Sanders NN, Braeckmans K, De Smedt SC, Demeester J, et al. The choice of a suitable oligosaccharide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying. Int J Pharm. 2006;311(1–2):237–44.

    Article  PubMed  CAS  Google Scholar 

  25. Gjetting T, Arildsen NS, Christensen CL, Poulsen TT, Roth JA, Handlos VN, et al. In vitro and in vivo effects of polyethylene glycol (PEG)-modified lipid in DOTAP/cholesterol-mediated gene transfection. Int J Nanomedicine. 2010;5:371–83.

    PubMed  CAS  Google Scholar 

  26. Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther. 2005;12(3):468–74.

    Article  PubMed  CAS  Google Scholar 

  27. Miller CR, Bondurant B, Mclean SD, McGovern KA, O’Brien DF. Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 1998;37(37):12875–83.

    Article  PubMed  CAS  Google Scholar 

  28. Santel A, Aleku M, Keil O, Endruschat J, Esche V, Fisch G, et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 2006;13(16):1222–34.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported in part by research grants R43CA134047, R01EB015253 and R01CA158300 from the National Cancer Institute, DHHS. Yinghuan Li is supported by the China Scholarship Council Fellowship. Images used in this article were generated at The Campus Microscopy and Imaging Facility, The Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie L.-S. Au.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wang, J., Gao, Y. et al. Relationships between Liposome Properties, Cell Membrane Binding, Intracellular Processing, and Intracellular Bioavailability. AAPS J 13, 585–597 (2011). https://doi.org/10.1208/s12248-011-9298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-011-9298-1

KEY WORDS

Navigation