Skip to main content

Advertisement

Log in

Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to prepare and characterize microparticles of budesonide alone and budesonide and polylactic acid (PLA) using supercritical fluid (SCF) technology. A precipitation with a compressed antisolvent (PCA) technique employing supercritical CO2 and a nozzle with 100-μm internal diameter was used to prepare microparticles of budesonide and budesonide-PLA. The effect of various operating variables (temperature and pressure of CO2 and flow rates of drug-polymer solution and/or CO2) and formulation variables (0.25%, 0.5%, and 1% budesonide in methylene chloride) on the morphology and size distribution of the microparticles was determined using scanning electron microscopy. In addition, budesonide-PLA particles were characterized for their surface charge and drug-polymer interactions using a zeta meter and differential scanning calorimetry (DSC), respectively. Furthermore, in vitro budesonide release from budesonide-PLA microparticles was determined at 37°C. Using the PCA process, budesonide and budesonide-PLA microparticles with mean diameters of 1 to 2 μm were prepared. An increase in budesonide concentration (0.25%–1% wt/vol) resulted in budesonide microparticles that were fairly spherical and less aggiomerated. In addition, the size of the microparticles increased with an increase in the drug-polymer solution flow rate (1.4–4.7 mL/min) or with a decrease in the CO2 flow rate (50–10 mL/min). Budesonide-PLA microparticles had a drug loading of 7.94%, equivalent to ∼80% encapsulation efficiency. Budesonide-PLA microparticles had a zeta potential of— 37±4 mV, and DSC studies indicated that SCF processing of budesonide-PLA microparticles resulted in the loss of budesonide crystallinity. Finally, in vitro drug release studies at 37°C indicated 50% budesonide release from the budesonide-PLA microparticles at the end of 28 days. Thus, the PCA process was successful in producing budesonide and budesonide-PLA microparticles. In addition, budesonide-PLA microparticles sustained budesonide release for 4 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brogden RN, McTavish D. Budesonide: an updated review of its pharmacological properties, and therapeutic efficacy in asthma and rhinitis. Drugs. 1992;44:375–407.

    Article  CAS  Google Scholar 

  2. Erlansson M, Svensjo E. Bergqvist D. Leukotriene B4-induced permeability increase in postcapillary venules and its inhibition by three different antiinflammatory drugs. Inflammation. 1989;13:693–705.

    Article  CAS  PubMed  Google Scholar 

  3. Svensjo E. The hamster cheek pouch as a model in microcirculation research. Eur Respir J. 1990;12:595s. Abstract.

    CAS  Google Scholar 

  4. Bandi N, Kompella UB. Budesonide reduces vascular endothelial growth factor secretion and expression in airway (Calu-1) and alveolar (A549) epithelial cells. Eur J Pharmacol. 2001;425:109–116.

    Article  CAS  PubMed  Google Scholar 

  5. Bandi N, Kompella UB. Budesonide reduces multidrug resistance-associated protein 1 expression in an airway epithelial cell line (Calu-1). Eur J Pharmacol. 2002;437:9–17.

    Article  CAS  PubMed  Google Scholar 

  6. Langer R. Drug delivery and targeting. Nature. 1998;392(6679, suppl):5–10.

    CAS  PubMed  Google Scholar 

  7. Tom JW, Lim G, Debenedetti PG, Prudhomme RK. Applications of supercritical fluids in controlled release of drugs. In: Brennecke JF, Kiran E, eds. Supercritical Engineering Science: Fundamentals and Applications. ACS Symposium Series. Oxford University Press, Cary, NC. no. 514. 1993:238–257.

    Google Scholar 

  8. Bodmeier R, Wang H, Dixon DJ, Mawson S, Johnston KP. Polymeric microspheres prepared by spraying into compressed carbon dioxide. Pharm Res. 1995;12:1211–1217.

    Article  CAS  PubMed  Google Scholar 

  9. Bleich J, Kleinebudde P, Mueller BW. Influence of gas density and pressure on microparticles produced with the ASES process. Int J Pharm. 1994;106:77–84.

    Article  CAS  Google Scholar 

  10. Bleich J, Mueller BW. Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process. J Microencapsulation. 1996;13:131–139.

    Article  Google Scholar 

  11. Falk R, Randolph TW, Meyer JD, Kelly RM, Manning MC. Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent. J Control Rel. 1997;44:77–85.

    Article  CAS  Google Scholar 

  12. Sunkara G, Kompella UB. Drug delivery applications of supercritical fluid technology. Drug Del. Technol. 2002, 2, 44–50.

    CAS  Google Scholar 

  13. Young TJ, Johnston KP, Mishima K, Tanaka H. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vaporover-liquid antisolvent. J Pharm Sci. 1999;88:640–650.

    Article  CAS  PubMed  Google Scholar 

  14. Dixon DJ, Johnston KP, Bodmeier RA. Polymeric materials formed by precipitation with a compressed fluid antisolvent. AIChE J. 1993;39:127–139.

    Article  CAS  Google Scholar 

  15. Randolph TW, Randolph AD, Mebes M, Yeung S. Sub-micrometer-sized biodegradable particles of poly (L-lactic acid) via the gas antisolvent spray precipitation process. Biotechnol Prog. 1993;9:429–435.

    Article  CAS  PubMed  Google Scholar 

  16. Bleich J, Mueller BW, Wabmus W. Aerosol solvent extraction system: a new microparticle production technique. Int J Pharm. 1993;97:111–117.

    Article  CAS  Google Scholar 

  17. Kompella UB, Koushik K. Preparation of drug delivery systems using supercritical fluid technology. Crit Rev Ther Drug Carrier Syst. 2001;18:173–199.

    CAS  PubMed  Google Scholar 

  18. Mawson S, Kanakia S, Johnston KP. Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent. J Appl Polym Sci. 1997;64:2105–2118.

    Article  CAS  Google Scholar 

  19. Steckel H, Thies J, Mueller BW. Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide. Int J Pharm. 1997;152:99–110.

    Article  CAS  Google Scholar 

  20. Palakodaty S, York P, Pritchard J. Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance. Pharm Res. 1998;15:1835–1843. [PUBMED]

    Article  CAS  PubMed  Google Scholar 

  21. Reverchon E, Celano C, Porta GD. Supercritical antisolvent precipitation: a new technique for preparing submicronic yttrium powders to improve YBCO superconductors. J Mater Res. 1998;13:284–289.

    Article  CAS  Google Scholar 

  22. Benedetti L, Bertucco A, Pallado P. Production of micronic particles of biocompatible polymer using supercritical carbon dioxide. Biotechnol Bioeng. 1997;53:232–237.

    Article  CAS  PubMed  Google Scholar 

  23. Mawson S, Johnston KP, Betts DE, McClain JB, DeSimone JM. Stabilized polymer microparticles by precipitation with a compressed fluid antisolvent, 1: polyfluoro acrylates. Macromolecules. 1997;30:71–77.

    Article  CAS  Google Scholar 

  24. Mawson S, Yates MZ, O_Neill ML, Johnston KP. Stabilized polymer microparticles by precipitation with a compressed fluid antisolvent 2: polypropylene oxide- and polybutylene oxide-based copolymers. Langmuir. 1997;13:1519–1528.

    Article  CAS  Google Scholar 

  25. Faouzi MA, Dine T, Luyckx M, Brunet C, Gressier B, Cazin M, Wallaert B, Cazin JC. High performance liquid chromatographic method for the determination of budesonide in bronchoalveolar lavage fluids of asthmatic patients. J Chromatogr B Biomed Appl. 1995;664:463–467.

    Article  CAS  PubMed  Google Scholar 

  26. Lengsfeld CS, Delplanque JP, Borocas VH, Randolph TW. Mechanism governing microparticle morphology during precipitation by a compressed antisolvent: atomization vs nucleation and growth. J Phys Chem B. 2000;104:2725–2735.

    Article  CAS  Google Scholar 

  27. Reaves JT, Griffith AT, Roberts CB. Critical properties of dilute carbon dioxide plus entrainer and ethane plus entrainer mixtures. J Chem Eng Data. 1998;43:683–686.

    Article  CAS  Google Scholar 

  28. Angus, S.; Armstrong, B., de Reuck, K.M., Eds. International Thermodynamic Tables of the Fluid State: Carbon Dioxide; Pergamon Press: Oxford, 1976.

    Google Scholar 

  29. Mu L, Feng SS. Fabrication, characterization and in vitro release of paclitaxel (Taxol) loaded polylactic-co-glycolic acid microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J Control Rel. 2001;76:239–254.

    Article  CAS  Google Scholar 

  30. Kompella UB, Bandi N, Ayalasomayajula SP. Polylactic acid nanoparticles for sustained release of budesonide. Drug Del Technol. 2001;1:28–34.

    CAS  Google Scholar 

  31. Van Hees T, Piel G, Evrard B, Otte X, Thunus L, Delattre L. Application of supercritical carbon dioxide for the preparation of a piroxicambeta-cyclodextrin inclusion compound. Pharm Res. 1999;16:1864–1870.

    Article  PubMed  Google Scholar 

  32. Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm Res. 1999;16:676–681.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday B. Kompella.

Additional information

Published: September 26, 2002

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, T.M., Bandi, N., Shulz, R. et al. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology. AAPS PharmSciTech 3, 18 (2002). https://doi.org/10.1208/pt030318

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/pt030318

Keywords

Navigation