Skip to main content

Advertisement

Log in

Development and characterization of biodegradable chitosan films for local delivery of paclitaxel

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Intratumoral and local drug delivery strategies have gained momentum recently as a promising modality in cancer therapy. In order to deliver paclitaxel at the tumor site in therapeutically relevant concentrations, chitosan films were fabricated. Paclitaxel could be loaded at 31% wt/wt in films, which were translucent and flexible. Physicochemical characterization of paclitaxel via thermal, spectroscopic, x-ray diffraction, and electron microscopy techniques revealed information on solid-state properties of paclitaxel as well as chitosan in films. While chitosan was in amorphous form, paclitaxel seemed to be present in both amorphous and crystalline forms in film. The polymeric dispersion of paclitaxel in poloxamer formed fibrous structures generating discontinuities in the film matrix, thereby leading to the introduction of perturbations in the packing arrangement of polymer chains. These films released only 10% to 15% of loaded paclitaxel by a burst effect under in vitro testing conditions, with lysozyme having no effect on the release. However, films softened after implantation in mice and lost integrity over time. The implantable delivery system is not only biodegradable but also well tolerated in vivo and hence, biocompatible as revealed by histological studies. The lack of formulation-induced local inflammatory responses of paclitaxel chitosan films suggests a new paradigm for localized chemotherapy based on implantable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelova N, Hunkeler D. Rationalizing the design of polymeric biomaterials.Trends Biotechnol. 1999;17:409–421.

    Article  CAS  PubMed  Google Scholar 

  2. Pillai O, Panchagnula R. Polymers in drug delivery.Curr Opin Chem Biol. 2001;5:447–451.

    Article  CAS  PubMed  Google Scholar 

  3. Pangburn SH, Trescony PV, Heller J. Lysozyme degradation of partially deacetylated chitin, its films and hydrogels.Biomaterials. 1982;3:105–108.

    Article  CAS  PubMed  Google Scholar 

  4. Janes KA, Fresnean MP, Marazuela A, et al. Chitosan nanoparticles as delivery systems for doxorubicin.J Control Release. 2001;73:255–267.

    Article  CAS  PubMed  Google Scholar 

  5. Ruel-Gariepy E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs.Int J Pharm. 2000;203:89–98.

    Article  CAS  PubMed  Google Scholar 

  6. Muzarelli R, Baldassarre V, Conti F, et al. Biological activity of chitosan: ultra structural study.Biomaterials. 1998;9:247–252.

    Article  Google Scholar 

  7. Senel S, Ikinci G, Kas S, et al. Chitosan films and hydrogels of cholhexidine gluconate for oral mucosal delivery.Int J Pharm. 2000;193:197–203.

    Article  CAS  PubMed  Google Scholar 

  8. Ouchi T, Banba T, Fujimoto M, et al. Synthesis and antitumor activity of chitosan canying 5-fluorouracil.Makromol Chem. 1989;190:1817–1825.

    Article  CAS  Google Scholar 

  9. Jameela SR, Jayakrisnan A. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle.Biomaterials. 1995;16:769–775.

    Article  CAS  PubMed  Google Scholar 

  10. Blanco MD, Gomez C, Olmo R, et al. Chitosan microspheres in PLG films as devices for cytarabine release.Int J Pharm. 2000;202:29–39.

    Article  CAS  PubMed  Google Scholar 

  11. Miwa A, Ishibe A, Nakano M, et al. Development of novel chitosan derivatives as micellar carriers of taxol.Pharm Res. 1998;15:1844–1850.

    Article  CAS  PubMed  Google Scholar 

  12. Ma J, Wang H, He B, et al. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer materials as a scaffold of human neofetal dermal fibroblasts.Biomaterials. 2001;22:331–336.

    Article  CAS  PubMed  Google Scholar 

  13. Miyazaki S, Yamaguchi H, Takada M, et al. Pharmaceutical application of biomedical polymers. XXIX. Preliminary study on film dosage form prepared from chitosan for oral drug delivery.Acta Pharm Nord. 1990;2:401–406.

    CAS  PubMed  Google Scholar 

  14. Chandy T, Sharma CP. Biodegradable chitosan matrix for the controlled release of steroids.Biomater Artif Cells Immobilization Biotechnol. 1991;19:745–760.

    Article  CAS  PubMed  Google Scholar 

  15. Lesser GJ, Grossman SA, Eller S, et al. The distribution of systemically administered [3H]-paclitaxel in rats: a quantitative autoradiographic study.Cancer Chemother Pharmacol. 1995;37:173–178.

    CAS  PubMed  Google Scholar 

  16. Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors.J Control Release. 2001;74:63–67.

    Article  CAS  PubMed  Google Scholar 

  17. Ringel I, Horwitz SB. Taxol is converted to 7-epitaxol, a biologically active isomer, in cell culture medium.J Pharmacol Exp Ther. 1987;242:692–698.

    CAS  PubMed  Google Scholar 

  18. Horisawa E, Hirota T, Kawajoe S, et al. Prolonged anti-inflammatory action of D,L-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for intra-articular delivery system in antigen-induced arthritic rabbit.Pharm Res. 2002;19:403–410.

    Article  CAS  PubMed  Google Scholar 

  19. Liggins RT, Hunter WL, Burt HM. Solid-state characterization of paclitaxel.J Pharm Sci. 1997;86:1458–1463.

    Article  CAS  PubMed  Google Scholar 

  20. Kemp W. Infrared spectroscopy. In:Organic Spectroscopy. London, UK: Macmillan Press; 1996:19–100.

    Google Scholar 

  21. Ratner BD, Kwok C. Characterization of delivery systems surface analysis and controlled release systems. In: Mathiowitz E, eds.Encyclopedia of Controlled Drug Delivery New York, NY: John Wiley and Sons; 1999:261–269.

    Google Scholar 

  22. Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ.Biomaterials. 2000;21:2155–2161.

    Article  CAS  PubMed  Google Scholar 

  23. Grit M, Crommelin DJ. Chemical stability of liposomes: implications for their physical stability.Chem Phys Lipids. 1993;64:3–18.

    Article  CAS  PubMed  Google Scholar 

  24. Zuidam NJ, Crommelin DJ. Chemical hydrolysis of phospholipids.J Pharm Sci. 1995;84:1113–1119.

    Article  CAS  PubMed  Google Scholar 

  25. Kofuji K, Shibata K, Murata Y, et al. Preparation and drug retention of biodegradable chitosan gel beads.Chem Pharm Bull (Tokyo). 1999;47:1494–1496.

    Article  CAS  Google Scholar 

  26. Schwendeman SP, Costantino HR, Gupta RK, et al. Strategies for stabilising tetanus toxoid towards the development of a single-dose tetanus vaccine.Dev Biol Stand. 1996;87:293–306.

    CAS  PubMed  Google Scholar 

  27. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives.Biomaterials. 1997;18:567–575.

    Article  CAS  PubMed  Google Scholar 

  28. Martin A. Polymer science. In: Physical Pharmacy:Physical Chemical Principles in the Pharmaceutical Sciences. Baltimore, MD: Waverly International; 1994:556–594.

    Google Scholar 

  29. Ford JL, Timmins P.Pharmaceutical Thermal Analysis: Techniques and Applications. Chichester, UK: Ellis Horwood; 1989:180–200.

    Google Scholar 

  30. Nunthanid J, Puttipipatkhachorn S, Yamamoto K, et al. Physical properties and molecular behavior of chitosan films.Drug Dev Ind Pharm. 2001;27:143–157.

    Article  CAS  PubMed  Google Scholar 

  31. Puttipipatkhachorn S, Nunthanid J, Yamamoto K, et al. Drug physical state and drug-polymer interaction on drug release from chitosan matrix films.J Control Release. 2001;75:143–153.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Babu Dhanikula.

Additional information

Published: October 11, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanikula, A.B., Panchagnula, R. Development and characterization of biodegradable chitosan films for local delivery of paclitaxel. AAPS J 6, 27 (2004). https://doi.org/10.1208/aapsj060327

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj060327

Keywords

Navigation