Skip to main content

Advertisement

Log in

Budding Multi-matrix Technology—a Retrospective Approach, Deep Insights, and Future Perspectives

  • Review Article
  • Theme: Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The human race is consistently striving for achieving good health and eliminate disease-causing factors. For the last few decades, scientists have been endeavoring to invent and innovate technologies that can substitute the conventional dosage forms and enable targeted and prolonged drug release at a particular site. The novel multi-matrix technology is a type of matrix formulation where the formulation is embraced to have a matrix system with multiple number of matrices. The MMX technology embraces with a combination of outer hydrophilic layer and amphiphilic/lipophilic core layer, within which drug is encapsulated followed by enteric coating for extended/targeted release at the required site. In comparison to conventional oral drug delivery systems and other drug delivery systems, multi-matrix (MMX) technology formulations afford many advantages. Additionally, it attributes for targeting strategy aimed at the colon and offers modified prolonged drug release. Thus, it has emerged rapidly as a potential alternative option in targeted oral drug delivery. However, the development of this MMX technology formulations is a exigent task and also has its own set of limitations. Due to its promising advantages and colon targeting strategy over the other colon targeted drug delivery systems, premier global companies are exploiting its potential. This article review deep insights into the formulation procedures, drug delivery mechanism, advantages, limitations, safety and efficacy studies of various marketed drug formulations of MMX technology including regulatory perspectives and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sastry SV, Nyshadham JR, Fix JA. Recent technological advances in oral drug delivery–a review. Pharm Sci Technol Today. 2000;3(4):138–45.

    Article  CAS  PubMed  Google Scholar 

  2. Varma MV, et al. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. Am J Drug Deliv. 2004;2(1):43–57.

    Article  CAS  Google Scholar 

  3. Tiwari SB, Rajabi-Siahboomi AR. Extended-release oral drug delivery technologies: monolithic matrix systems. Drug delivery systems. 2008;437:217–43.

    Article  CAS  Google Scholar 

  4. Kotla N, Shivapooja A. Recent developments in colon specific drug delivery systems approaches promising in targeting colon. Int J Pharm Clin Res. 2014;6:101–6.

    Google Scholar 

  5. Grobman B. MULTIPLE MYELOMA PRESENTING AS CVA. Minerva Med. 1982;73(34):2183–8.

    Google Scholar 

  6. Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life. 2019;12(2):113.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xavier R, Podolsky D. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34.

    Article  CAS  PubMed  Google Scholar 

  8. Bayan MF, Bayan RF. Recent advances in mesalamine colonic delivery systems. Future Journal of Pharmaceutical Sciences. 2020;6(1):1–7.

    Article  Google Scholar 

  9. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. The Lancet. 2007;369(9573):1641–57.

    Article  CAS  Google Scholar 

  10. Christophi GP, Rengarajan A, Ciorba MA. Rectal budesonide and mesalamine formulations in active ulcerative proctosigmoiditis: efficacy, tolerance, and treatment approach. Clin Exp Gastroenterol. 2016;9:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thia KT, et al. Risk factors associated with progression to intestinal complications of Crohn’s disease in a population-based cohort. Gastroenterology. 2010;139(4):1147–55.

    Article  PubMed  Google Scholar 

  12. Le Berre C, et al. Ulcerative colitis and Crohn’s disease have similar burden and goals for treatment. Clin Gastroenterol Hepatol. 2020;18(1):14–23.

    Article  PubMed  Google Scholar 

  13. Nardelli S, et al. MMX® technology and its applications in gastrointestinal diseases. Ther Adv Gastroenterol. 2017;10(7):545–52.

    Article  CAS  Google Scholar 

  14. Murray A, et al. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. Cochrane Database of Systematic Reviews. 2020;8(8):CD000543.

    Google Scholar 

  15. Liu P, et al. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: opportunities and emerging strategies. Acta Pharmaceutica Sinica B, 2020.

  16. Tindall WN. New approaches to adherence issues when dosing oral aminosalicylates in ulcerative colitis. Am J Health Syst Pharm. 2009;66(5):451–7.

    Article  CAS  PubMed  Google Scholar 

  17. Khan S, et al. Real-world evidence on adherence, persistence, switching and dose escalation with biologics in adult inflammatory bowel disease in the United States: a systematic review. J Clin Pharm Ther. 2019;44(4):495–507.

    PubMed  Google Scholar 

  18. Kotla NG, et al. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv Drug Deliv Rev. 2019;146:248–66.

    Article  CAS  PubMed  Google Scholar 

  19. Prantera C, et al. A new oral delivery system for 5-ASA: preliminary clinical findings for MMx. Inflamm Bowel Dis. 2005;11(5):421–7.

    Article  PubMed  Google Scholar 

  20. Kuenzig ME, et al. Budesonide for maintenance of remission in Crohn’s disease. Cochrane Database of Systematic Reviews. 2014;2014(8):CD002913.

    Google Scholar 

  21. Salice M, et al. A current overview of corticosteroid use in active ulcerative colitis. Expert Rev Gastroenterol Hepatol. 2019;13(6):557–61.

    Article  CAS  PubMed  Google Scholar 

  22. Harbord M, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: current management. J Crohn’s Colitis. 2017;11(7):769–84.

    Article  Google Scholar 

  23. Mantzaris GJ, et al. How adherent to treatment with azathioprine are patients with Crohn’s disease in long-term remission? Inflamm Bowel Dis. 2007;13(4):446–50.

    Article  PubMed  Google Scholar 

  24. Mottet C, et al. Experts opinion on the practical use of azathioprine and 6-mercaptopurine in inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(11):2733–47.

    Article  PubMed  Google Scholar 

  25. Kornbluth A, Sachar DB. Ulcerative colitis practice guidelines in adults: American college of gastroenterology, practice parameters committee. Am J Gastroenterol. 2010;105(3):501–23.

    Article  PubMed  Google Scholar 

  26. Nanda K, Moss AC. Update on the management of ulcerative colitis: treatment and maintenance approaches focused on MMX® mesalamine. Clinical pharmacology: advances and applications. 2012;4:41.

    CAS  Google Scholar 

  27. Qian X, et al. Low dose of azathioprine is effective to induce and maintain remission in active Crohn disease: A prospective observational study. Medicine. 2018;97(34):e11814.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pasternak B, et al. Use of azathioprine and the risk of cancer in inflammatory bowel disease. Am J Epidemiol. 2013;177(11):1296–305.

    Article  PubMed  Google Scholar 

  29. Armstrong RG, West J, Card TR. Risk of cancer in inflammatory bowel disease treated with azathioprine: a UK population-based case–control study. Am J Gastroenterol. 2010;105(7):1604–9.

    Article  CAS  PubMed  Google Scholar 

  30. de Boer NK, et al. Thiopurines in inflammatory bowel disease: new findings and perspectives. J Crohns Colitis. 2018;12(5):610–20.

    Article  PubMed  Google Scholar 

  31. Oliva-Hemker MM, et al. Nonadherence with thiopurine immunomodulator and mesalamine medications in children with Crohn disease. J Pediatr Gastroenterol Nutr. 2007;44(2):180–4.

    Article  CAS  PubMed  Google Scholar 

  32. Pogoda K, et al. Effects of BRCA Germline Mutations on Triple-Negative Breast Cancer Prognosis. J Oncol. 2020;2020:8545643.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Colombel JF, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362(15):1383–95.

    Article  CAS  PubMed  Google Scholar 

  34. Rawla P, Sunkara T, Raj JP. Role of biologics and biosimilars in inflammatory bowel disease: current trends and future perspectives. J Inflamm Res. 2018;11:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rutgeerts P, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353(23):2462–76.

    Article  CAS  PubMed  Google Scholar 

  36. Moss AC, Peppercorn MA. Steroid-refractory severe ulcerative colitis. Drugs. 2008;68(9):1157–67.

    Article  CAS  PubMed  Google Scholar 

  37. Kamm MA, et al. Once-daily, high-concentration MMX mesalamine in active ulcerative colitis. Gastroenterology. 2007;132(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  38. Fiorino G, et al. New drug delivery systems in inflammatory bowel disease: MMX™ and tailored delivery to the gut. Curr Med Chem. 2010;17(17):1851–7.

    Article  CAS  PubMed  Google Scholar 

  39. Belali N, Wathoni N, Muchtaridi M. Advances in orally targeted drug delivery to colon. Journal of advanced pharmaceutical technology & research. 2019;10(3):100.

    Article  CAS  Google Scholar 

  40. Koutroubakis IE. Recent advances in the management of distal ulcerative colitis. World journal of gastrointestinal pharmacology and therapeutics. 2010;1(2):43.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Phad AB, et al. Matrix Tablet: As A Sustained Release Drug Delivery System. World Journal of Pharmaceutical Research. 2014;3(5):1377–1390.

  42. Fernandez-Becker NQ, Moss AC. Improving delivery of aminosalicylates in ulcerative colitis. Drugs. 2008;68(8):1089–103.

    Article  CAS  PubMed  Google Scholar 

  43. Moro et al. United States Patent, KR101763700B1, Solid composition for the oral administration of dyes and diagnostic use thereof. korea.

  44. Joshi M. Role of eudragit in targeted drug delivery. Int J Curr Pharm Res. 2013;5(2):58–62.

    CAS  Google Scholar 

  45. Ford JL, Rubinstein MH, Hogan JE. Formulation of sustained release promethazine hydrochloride tablets using hydroxypropyl-methylcellulose matrices. Int J Pharm. 1985;24(2–3):327–38.

    Article  CAS  Google Scholar 

  46. Bettini R, et al. Translocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate. J Control Release. 2001;70(3):383–91.

    Article  CAS  PubMed  Google Scholar 

  47. Ghori MU, Conway BR. Hydrophilic matrices for oral control drug delivery. Am J Pharmacol Sci. 2015;3(5):103–9.

    CAS  Google Scholar 

  48. Rao KR, Devi KP, Buri P. Influence of molecular size and water solubility of the solute on its release from swelling and erosion controlled polymeric matrices. J Control Release. 1990;12(2):133–41.

    Article  CAS  Google Scholar 

  49. Nautyal U, Gupta D. Oral Sustained Release Tablets: An Overview With A Special Emphasis On Matrix Tablet. International Journal of Health and Biological Sciences. 2020;3(1):06–13.

    Google Scholar 

  50. Sujja-Areevath J, et al. Relationship between swelling, erosion and drug release in hydrophillic natural gum mini-matrix formulations. Eur J Pharm Sci. 1998;6(3):207–17.

    Article  CAS  PubMed  Google Scholar 

  51. Maggi L, et al. Dissolution behaviour of hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study Biomaterials. 2002;23(4):1113–9.

    Article  CAS  PubMed  Google Scholar 

  52. Tahara K, Yamamoto K, Nishihata T. Overall mechanism behind matrix sustained release (SR) tablets prepared with hydroxypropyl methylcellulose 2910. J Control Release. 1995;35(1):59–66.

    Article  CAS  Google Scholar 

  53. Nokhodchi A, et al. The role of oral controlled release matrix tablets in drug delivery systems. BioImpacts. 2012;2(4):175.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cellulose, M.a.W.M. MethocelTM and WellenceTM Modified Cellulose. Nutrition & Biosciences, 2020. www.dupontnutritionandbiosciences.com

  55. Levina M. Application of a modelling system in the formulation of extended release hydrophilic matrices. Pharmaceutical Technology Europe. 2006;18(7):20–6.

    CAS  Google Scholar 

  56. Ebube NK, Jones AB. Sustained release of acetaminophen from a heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers. Int J Pharm. 2004;272(1–2):19–27.

    Article  CAS  PubMed  Google Scholar 

  57. Ghori MU, et al. Simultaneous quantification of drug release and erosion from hypromellose hydrophilic matrices. Int J Pharm. 2014;465(1–2):405–12.

    Article  CAS  PubMed  Google Scholar 

  58. Klančar U, et al. Determining the polymer threshold amount for achieving robust drug release from HPMC and HPC matrix tablets containing a high-dose BCS class I model drug: in vitro and in vivo studies. AAPS PharmSciTech. 2015;16(2):398–406.

    Article  PubMed  Google Scholar 

  59. Jain AK, et al. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets. J Control Release. 2014;187:50–8.

    Article  CAS  PubMed  Google Scholar 

  60. Asare-Addo K, et al. The influence of agitation sequence and ionic strength on in vitro drug release from hypromellose (E4M and K4M) ER matrices—The use of the USP III apparatus. Colloids Surf, B. 2013;104:54–60.

    Article  CAS  Google Scholar 

  61. Viridén A, Larsson A, Wittgren B. The effect of substitution pattern of HPMC on polymer release from matrix tablets. Int J Pharm. 2010;389(1–2):147–56.

    Article  PubMed  Google Scholar 

  62. Escudero J, Ferrero C, Jiménez-Castellanos M. Compaction properties, drug release kinetics and fronts movement studies from matrices combining mixtures of swellable and inert polymers: Effect of HPMC of different viscosity grades. Int J Pharm. 2008;351(1–2):61–73.

    Article  CAS  PubMed  Google Scholar 

  63. Escudero J, Ferrero C, Jiménez-Castellanos M. Compaction properties, drug release kinetics and fronts movement studies from matrices combining mixtures of swellable and inert polymers. II. Effect of HPMC with different degrees of methoxy/hydroxypropyl substitution. Int J Pharmac. 2010;387(1–2):56–64.

    Article  CAS  Google Scholar 

  64. Shah NH, et al. Effect of processing techniques in controlling the release rate and mechanical strength of hydroxypropyl methylcellulose based hydrogel matrices. Eur J Pharm Biopharm. 1996;42(3):183–7.

    CAS  Google Scholar 

  65. Patel H, et al. Matrix type drug delivery system: A review. J Pharm Sci Biosci Res. 2011;1(3):143–51.

    Google Scholar 

  66. Mamidala RK, et al. Factors influencing the design and performance of oral sustained/controlled release dosage forms. Int J Pharm Sci and Nanotech. 2009;2(3):583–94.

    CAS  Google Scholar 

  67. Anita, Singh A, Dabral A. A review on colon targeted drug delivery system. Int J Pharmaceut Sci Res. 2019;10(1):47–56.

    CAS  Google Scholar 

  68. Villa Roberto et al. "Mesalazine controlled release oral pharmaceutical compositions." U.S. Patent No. 6,773,720. 10 Aug. 2004.

  69. Mauro Ajani, L.M.I.L.M., Lainate (Milano) (IT): Roberto Villa, Lainate (Milano) (IT), Pharmaceutical Compositions for the Oral Administration of Heparn or Dervatives thereof, US 9,308,220 B2. 2016, Cosmo Technologies Limited, Wicklow (IE).

  70. Conti S, et al. Matrices containing NaCMC and HPMC: 1. Dissolution performance characterization. Int J Pharmaceut. 2007;333(1–2):136–42.

    Article  CAS  Google Scholar 

  71. Conti S, et al. Matrices containing NaCMC and HPMC: 2 Swelling and release mechanism study. Int J pharmaceut. 2007;333(1–2):143–51.

    Article  CAS  Google Scholar 

  72. Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154(1):2–19.

    Article  CAS  PubMed  Google Scholar 

  73. Malamataris S, Karidas T. Effect of particle size and sorbed moisture on the tensile strength of some tableted hydroxypropyl methylcellulose (HPMC) polymers. Int J Pharm. 1994;104(2):115–23.

    Article  CAS  Google Scholar 

  74. Omidian H, Park K. Swelling agents and devices in oral drug delivery. Journal of drug delivery science and technology. 2008;18(2):83–93.

    Article  CAS  Google Scholar 

  75. Ferrero C, Massuelle D, Doelker E. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. J Control Release. 2010;141(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  76. Gao P, et al. Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release. J Pharmaceut Sci. 1996;85(7):732–40.

    Article  CAS  Google Scholar 

  77. Enayatifard R, et al. Effect of hydroxypropyl methylcellulose and ethyl cellulose content on release profile and kinetics of diltiazem HCl from matrices. Tropical Journal of Pharmaceutical Research. 2009;8(5):48086.

    Article  Google Scholar 

  78. Lucinda-Silva RM, Salgado HRN, Evangelista RC. Alginate–chitosan systems: in vitro controlled release of triamcinolone and in vivo gastrointestinal transit. Carbohyd Polym. 2010;81(2):260–8.

    Article  CAS  Google Scholar 

  79. Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech. 2015;16(4):731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sandborn W, et al. MMX Multi Matrix System® mesalazine for the induction of remission in patients with mild-to-moderate ulcerative colitis: a combined analysis of two randomized, double-blind, placebo-controlled trials. Aliment Pharmacol Ther. 2007;26(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  81. Campbell D, Pethrick RA, White JR. Polymer Characterization Physical Techniques. Chapman and Hall. Polymer characterization - Wikipedia. 1989; pp 11–13

  82. Su W-F. Characterization of Polymer. In: Principles of Polymer Design and Synthesis. Berlin: Springer; 2013. p. 89–110.

    Chapter  Google Scholar 

  83. Van Lieshout MH, et al. Characterization of polymers by multi-step thermal desorption/programmed pyrolysis gas chromatography using a high temperature PTV injector. J High Resolut Chromatogr. 1996;19(4):193–9.

    Article  Google Scholar 

  84. Wang L, et al. Design and evaluation of hydrophilic matrix system containing polyethylene oxides for the zero-order controlled delivery of water-insoluble drugs. AAPS PharmSciTech. 2017;18(1):82–92.

    Article  CAS  PubMed  Google Scholar 

  85. Körner A, et al. Influence of different polymer types on the overall release mechanism in hydrophilic matrix tablets. Molecules. 2009;14(8):2699–716.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Arai K, Shikata T. Hydration/Dehydration Behavior of Hydroxyethyl Cellulose Ether in Aqueous Solution. Molecules. 2020;25(20):4726.

    Article  CAS  PubMed Central  Google Scholar 

  87. Zahoor FD, et al. Investigation of within-tablet dynamics for extended release of a poorly soluble basic drug from hydrophilic matrix tablets using ATR–FTIR imaging. Mol Pharm. 2020;17(4):1090–9.

    Article  CAS  PubMed  Google Scholar 

  88. Quodbach J, Kleinebudde P. Performance of tablet disintegrants: impact of storage conditions and relative tablet density. Pharm Dev Technol. 2015;20(6):762–8.

    Article  CAS  PubMed  Google Scholar 

  89. Chen YY, et al. Quantitative ultra-fast MRI of HPMC swelling and dissolution. J Pharm Sci. 2010;99(8):3462–72.

    Article  CAS  PubMed  Google Scholar 

  90. Chen C, Gladden LF, Mantle MD. Direct visualization of in vitro drug mobilization from Lescol XL tablets using two-dimensional 19F and 1H magnetic resonance imaging. Mol Pharm. 2014;11(2):630–7.

    Article  CAS  PubMed  Google Scholar 

  91. Tajarobi F, et al. Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging—effect of solubility of additives on HPMC matrix tablets. Eur J Pharm Sci. 2009;37(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  92. Nott KP. Magnetic resonance imaging of tablet dissolution. Eur J Pharm Biopharm. 2010;74(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  93. Yassin S, et al. Diffusion and swelling measurements in pharmaceutical powder compacts using terahertz pulsed imaging. J Pharm Sci. 2015;104(5):1658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mašková E, et al. Highly soluble drugs directly granulated by water dispersions of insoluble eudragit® polymers as a part of hypromellose K100M matrix systems. BioMed research international. 2019;2019:8043415.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hiremath P, Nuguru K, Agrahari V. Material attributes and their impact on wet granulation process performance. In: Handbook of pharmaceutical wet granulation. Elsevier; 2019. p. 263–315.

    Google Scholar 

  96. Prakash K, Reddy B, Sreenivasulu V. Effect of tablet surface area and surface area/volume on drug release from lamivudine extended release matrix tablets. International Journal of Pharmaceutical Sciences and Nanotechnology. 2010;3(1):872–6.

    Article  Google Scholar 

  97. Mamani PL, Ruiz-Caro R, Veiga MD. Matrix tablets: the effect of hydroxypropyl methylcellulose/anhydrous dibasic calcium phosphate ratio on the release rate of a water-soluble drug through the gastrointestinal tract I. vitro tests. Aaps Pharmscitech. 2012;13(4):1073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Prasanth V, Jayaprakash R, Mathew ST. Colon specific drug delivery systems: a review on various pharmaceutical approaches. J Appl Pharm Sci. 2012;2(01):163–9.

    Google Scholar 

  99. Zarmpi P, et al. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur J Pharm Biopharm. 2017;111:1–15.

    Article  CAS  PubMed  Google Scholar 

  100. Akbari J, et al. Influence of hydroxypropyl methylcellulose molecular weight grade on water uptake, erosion and drug release properties of diclofenac sodium matrix tablets. Trop J Pharm Res. 2011;10(5):535–41.

    CAS  Google Scholar 

  101. Tritt-Goc J, Kowalczuk J, Pislewski N. Hydration of hydroxypropylmethyl cellulose: Effects of pH and molecular mass. Acta Physica Polonica-Series A General Physics. 2005;108(1):197–206.

    Article  CAS  Google Scholar 

  102. Greiderer A, et al. Characterization of hydroxypropylmethylcellulose (HPMC) using comprehensive two-dimensional liquid chromatography. J Chromatogr A. 2011;1218(34):5787–93.

    Article  CAS  PubMed  Google Scholar 

  103. Kavanagh N, Corrigan OI. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices—influence of agitation rate and dissolution medium composition. Int J Pharm. 2004;279(1–2):141–52.

    Article  CAS  PubMed  Google Scholar 

  104. Pajander J, et al. Behaviour of HPMC compacts investigated using UV-imaging. Int J Pharm. 2012;427(2):345–53.

    Article  CAS  PubMed  Google Scholar 

  105. Ju RT, Nixon PR, Patel MV. Drug release from hydrophilic matrices. 1. New scaling laws for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer. Journal of pharmaceutical sciences. 1995;84(12):1455–63.

    Article  CAS  PubMed  Google Scholar 

  106. Reynolds TD, et al. Polymer erosion and drug release characterization of hydroxypropyl hethylcellulose matrices. J Pharm Sci. 1998;87(9):1115–23.

    Article  CAS  PubMed  Google Scholar 

  107. Brady J, et al. Polymer properties and characterization. In: Developing solid oral dosage forms. Elsevier; 2017. p. 181–223.

    Chapter  Google Scholar 

  108. Mastropietro DJ, Park K, and Omidian H. Polymers in oral drug delivery. 2017. Faculty Books and Book Chapters, edition 2, chapter 23. https://nsuworks.nova.edu/hpd_corx_facbooks/17

  109. Gustafsson C, et al. Characterisation of particle properties and compaction behaviour of hydroxypropyl methylcellulose with different degrees of methoxy/hydroxypropyl substitution. Eur J Pharm Sci. 1999;9(2):171–84.

    Article  CAS  PubMed  Google Scholar 

  110. Holte Ø, et al. Sustained release of water-soluble drug from directly compressed alginate tablets. Eur J Pharm Sci. 2003;20(4–5):403–7.

    Article  CAS  PubMed  Google Scholar 

  111. Liew CV, et al. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharm. 2006;309(1–2):25–37.

    Article  CAS  PubMed  Google Scholar 

  112. Nish S, Mathew G, Lincy J. Matrix tablets: an effective way for oral controlled release drug delivery. Iran J Pharmaceut Sci. 2012;8(3):165–70.

    Google Scholar 

  113. Medicines, E.D.f.t.Q.o., European pharmacopoeia. 2007: Council of Europe.

  114. Matero S, et al. Predicting the drug concentration in starch acetate matrix tablets from ATR-FTIR spectra using multi-way methods. Anal Chim Acta. 2007;595(1–2):190–7.

    Article  CAS  PubMed  Google Scholar 

  115. Khaled SA, et al. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–50.

    Article  CAS  PubMed  Google Scholar 

  116. Krishnaiah Y, Karthikeyan R, Satyanarayana V. A three-layer guar gum matrix tablet for oral controlled delivery of highly soluble metoprolol tartrate. Int J Pharm. 2002;241(2):353–66.

    Article  CAS  PubMed  Google Scholar 

  117. Marinich J, Ferrero C, Jiménez-Castellanos M. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: Physicochemical and technological characterisation. Eur J Pharm Biopharm. 2009;72(1):138–47.

    Article  CAS  PubMed  Google Scholar 

  118. Muñoz-Ruiz A, Jiménez-Castellanos M. Integrated system of data acquisition for measure of flow rate. Pharm Technol Int Biopharm. 1993;8:21–9.

    Google Scholar 

  119. Heckel R. Density-pressure relationships in powder compaction. Trans Metall Soc AIME. 1961;221(4):671–5.

    CAS  Google Scholar 

  120. Heckel W. An analysis of powder compaction phenomena. Trans Metall Soc AIME. 1961;221:671–5.

    CAS  Google Scholar 

  121. Moes JJ, et al. Application of process analytical technology in tablet process development using NIR spectroscopy: Blend uniformity, content uniformity and coating thickness measurements. Int J Pharm. 2008;357(1–2):108–18.

    Article  CAS  PubMed  Google Scholar 

  122. Baumgartner S, et al. Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using 1H NMR and MRI methods. Eur J Pharm Biopharm. 2005;59(2):299–306.

    Article  CAS  PubMed  Google Scholar 

  123. Hyde T, Gladden L, Payne R. A nuclear magnetic resonance imaging study of the effect of incorporating a macromolecular drug in poly (glycolic acid-co-DL-lactic acid). J Control Release. 1995;36(3):261–75.

    Article  CAS  Google Scholar 

  124. Tritt-Goc J, Piślewski N. Magnetic resonance imaging study of the swelling kinetics of hydroxypropylmethylcellulose (HPMC) in water. J Control Release. 2002;80(1–3):79–86.

    Article  CAS  PubMed  Google Scholar 

  125. Guo H, Heinämäki J, Yliruusi J. Characterization of particle deformation during compression measured by confocal laser scanning microscopy. Int J Pharm. 1999;186(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  126. Adler J, Jayan A, Melia CD. A method for quantifying differential expansion within hydrating hydrophilic matrixes by tracking embedded fluorescent microspheres. J Pharm Sci. 1999;88(3):371–7.

    Article  CAS  PubMed  Google Scholar 

  127. Pygall SR, et al. Pharmaceutical applications of confocal laser scanning microscopy: The physical characterisation of pharmaceutical systems. Adv Drug Deliv Rev. 2007;59(14):1434–52.

    Article  CAS  PubMed  Google Scholar 

  128. Cutts L, et al. Solute and water transport within the gel layer of hydrating HPMC tablets. In: Proc Int Symp Control Release Bioact Mater. 1995.

    Google Scholar 

  129. Brunner M, et al. Gastrointestinal transit and 5-ASA release from a new mesalazine extended-release formulation. Aliment Pharmacol Ther. 2003;17(3):395–402.

    Article  CAS  PubMed  Google Scholar 

  130. Williams C, et al. Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease. Ther Adv Gastroenterol. 2011;4(4):237–48.

    Article  CAS  Google Scholar 

  131. Qureshi AI, Cohen RD. Mesalamine delivery systems: do they really make much difference? Adv Drug Deliv Rev. 2005;57(2):281–302.

    Article  CAS  PubMed  Google Scholar 

  132. Cohen R. evolutionary advances in the delivery of aminosalicylates for the treatment of ulcerative colitis. Aliment Pharmacol Ther. 2006;24(3):465–74.

    Article  CAS  PubMed  Google Scholar 

  133. Pharmaceuticals C. LIALDATM MMX treatment for ulcerative colitis gets FDA approval, https://www.cosmopharma.com/. 2007 [cited 2007; Available from: https://www.cosmopharma.com/.

  134. Iacucci M, de Silva S, Ghosh S. Mesalazine in inflammatory bowel disease: a trendy topic once again? Can J Gastroenterol. 2010;24(2):127–33.

    Article  PubMed  PubMed Central  Google Scholar 

  135. McCormack PL, Robinson DM, Perry CM. Delayed-release Multi Matrix System (MMX [TM]) mesalazine: in ulcerative colitis. Drugs. 2007;67(17):2635–43.

    Article  CAS  PubMed  Google Scholar 

  136. Kedia P, Cohen RD. Once-daily MMX mesalamine for the treatment of mild-to-moderate ulcerative colitis. Ther Clin Risk Manag. 2007;3(5):919.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sandborn WJ, et al. Once-daily dosing of delayed-release oral mesalamine (400-mg tablet) is as effective as twice-daily dosing for maintenance of remission of ulcerative colitis. Gastroenterology. 2010;138(4):1286-1296.e3.

    Article  CAS  PubMed  Google Scholar 

  138. Hinojosa J, Navas V, Saro C. Pharmacokinetics: efficacy and safety of MMX mesalamine formulation for treating ulcerative colitis. Revista Colombiana de Gastroenterologia. 2014;29(1):46–54.

    Google Scholar 

  139. Roberto Villa, L.I.M.P., Cignese (IT); Mauro Ajani, Milan (IT): Lorenzo Fossati, Milan (IT), CONTROLLED RELEASE AND TASTE MASKING ORAL PHARMACEUTICAL COMPOSITION., 2018, Cosmo Technologies Limited, Wicklow (IE). US patent 10660858B2,United States.

  140. Schreiber S, Kamm MA, Lichtenstein GR. Mesalamine with MMX™ technology for the treatment of ulcerative colitis. Expert Rev Gastroenterol Hepatol. 2008;2(3):299–314.

    Article  CAS  PubMed  Google Scholar 

  141. Lichtenstein GR, et al. Effect of once-or twice-daily MMX mesalamine (SPD476) for the induction of remission of mild to moderately active ulcerative colitis. Clin Gastroenterol Hepatol. 2007;5(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  142. Hardy J, et al. Gastrointestinal transit of an enteric-coated delayed-release 5-aminosalicylic acid tablet. Aliment Pharmacol Ther. 1987;1(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  143. Hardy J, Healey J, Reynolds J. Evaluation of an enteric-coated delayed-release 5-aminosalicylic acid tablet in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 1987;1(4):273–80.

    Article  PubMed  Google Scholar 

  144. Hardy J, et al. Localization of drug release sites from an oral sustained-release formulation of 5-ASA (Pentasa®) in the gastrointestinal tract using gamma scintigraphy. J Clin Pharmacol. 1993;33(8):712–8.

    Article  CAS  PubMed  Google Scholar 

  145. Healey J. Gastrointestinal transit and release of mesalazine tablets in patients with inflammatory bowel disease. Scand J Gastroenterol. 1990;25(sup172):47–51.

    Article  Google Scholar 

  146. De Vos M, et al. Concentrations of 5-ASA and Ac-5-ASA in human ileocolonic biopsy homogenates after oral 5-ASA preparations. Gut. 1992;33(10):1338–42.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Naganuma M, et al. Measurement of colonic mucosal concentrations of 5-aminosalicylic acid is useful for estimating its therapeutic efficacy in distal ulcerative colitis: comparison of orally administered mesalamine and sulfasalazine. Inflamm Bowel Dis. 2001;7(3):221–5.

    Article  CAS  PubMed  Google Scholar 

  148. Ahmed I. Effect of simulated gastrointestinal conditions on drug release from pectin/ethylcellulose as film coating for drug delivery to the colon. Drug Dev Ind Pharm. 2005;31(4–5):465–70.

    Article  CAS  PubMed  Google Scholar 

  149. Layer PH, et al. Delivery and fate of oral mesalamine microgranules within the human small intestine. Gastroenterology. 1995;108(5):1427–33.

    Article  CAS  PubMed  Google Scholar 

  150. Hua Z, et al. Technology to obtain sustained release characteristics of drugs after delivered to the colon. J Drug Target. 1999;6(6):439–48.

    Article  Google Scholar 

  151. Stolk L, et al. Dissolution profiles of mesalazine formulations in vitro. Pharm Weekbl. 1990;12(5):200–4.

    Article  CAS  Google Scholar 

  152. Arkbage K, et al. Bioaccessibility of folic acid and (6 S)-5-methyltetrahydrofolate decreases after the addition of folate-binding protein to yogurt as studied in a dynamic in vitro gastrointestinal model. J Nutr. 2003;133(11):3678–83.

    Article  CAS  PubMed  Google Scholar 

  153. Tenjarla S, et al. Release of 5-aminosalicylate from an MMX mesalamine tablet during transit through a simulated gastrointestinal tract system. Adv Ther. 2007;24(4):826–40.

    Article  CAS  PubMed  Google Scholar 

  154. Schellekens R, et al. A novel dissolution method relevant to intestinal release behaviour and its application in the evaluation of modified release mesalazine products. Eur J Pharm Sci. 2007;30(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  155. D’haens, G, . Systematic review: second-generation vs. conventional corticosteroids for induction of remission in ulcerative colitis. Aliment Pharmacol Therap. 2016;44(10):1018–29.

    Article  Google Scholar 

  156. UCERIS®/ CORTIMENT®, https://www.cosmopharma.com/products/uceris-Cortiment. [cited 2021 Feb 20].

  157. Roberto Villa , L.I.M.P., Gignese ( IT ) ; Mauro Ajani , Milan ( IT ) ; Lorenzo Fossati , Milan ( IT ) CONTROLLED RELEASE AND TASTE MASKING ORAL PHARMACEUTICAL COMPOSITION 2017, COSMO TECHNOLOGIES LIMITED , Dublin ( IE ).

  158. De Vos M. Clinical pharmacokinetics of slow release mesalazine. Clin Pharmacokinet. 2000;39(2):85–97.

    Article  PubMed  Google Scholar 

  159. Gionchetti P, et al. Bioavailability of single and multiple doses of a new oral formulation of 5-ASA in patients with inflammatory bowel disease and healthy volunteers. Aliment Pharmacol Ther. 1994;8(5):535–40.

    Article  CAS  PubMed  Google Scholar 

  160. Brunner M, et al. Gastrointestinal transit, release and plasma pharmacokinetics of a new oral budesonide formulation. Br J Clin Pharmacol. 2006;61(1):31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Malayandi R, et al. Biopharmaceutical considerations and characterizations in development of colon targeted dosage forms for inflammatory bowel disease. Drug Deliv Transl Res. 2014;4(2):187–202.

    Article  CAS  PubMed  Google Scholar 

  162. Farkas K, Molnár T. Novel extended release budesonide formulation for treatment of ulcerative colitis. Expert Opin Pharmacother. 2014;15(1):131–7.

    Article  CAS  PubMed  Google Scholar 

  163. COSMO AND SANTARUS FILE LAWSUIT AGAINST PAR FOR PATENT INFRINGEMENT OF UCERIS PATENTS. 2015 [cited 2015 February 3]; Available from: https://www.cosmopharma.com/news-and-media/press-releases-and-company-news/2015/03-02-2015.

  164. Celasco G, et al. Efficacy of intracolonic administration of low-molecular-weight heparin CB-01-05, compared to other low-molecular-weight heparins and unfractionated heparin, in experimentally induced colitis in rat. Dig Dis Sci. 2008;53(12):3170–5.

    Article  CAS  PubMed  Google Scholar 

  165. Shen J, et al. Meta-analysis: the utility and safety of heparin in the treatment of active ulcerative colitis. Aliment Pharmacol Ther. 2007;26(5):653–63.

    Article  CAS  PubMed  Google Scholar 

  166. Celasco G, et al. Clinical trial: oral colon-release parnaparin sodium tablets (CB-01-05 MMX®) for active left-sided ulcerative colitis. Aliment Pharmacol Ther. 2010;31(3):375–86.

    Article  CAS  PubMed  Google Scholar 

  167. Pastorelli L, et al. Oral, colonic-release low-molecular-weight heparin: an initial open study of Parnaparin-MMX for the treatment of mild-to-moderate left-sided ulcerative colitis. Aliment Pharmacol Ther. 2008;28(5):581–8.

    Article  CAS  PubMed  Google Scholar 

  168. Chande N, et al. Unfractionated or low-molecular weight heparin for induction of remission in ulcerative colitis. Cochrane Database of Systematic Reviews. 2015;10(8):6774.

    Google Scholar 

  169. Mauro Ajani, M.I.R.B., Milan (IT): Giuseppe Celasco, Genoa (IT); Roberto Villa, Lecco (IT), , ORAL ANTIMICROBIAL PHARMACEUTICAL COMPOSITIONS. 2013, US 8,486,446 B2, Cosmo Technologies Ltd., Dublin (IE).

  170. Riddle MS, Connor BA, Tribble DR. Targeted Therapy in Travelers’ Diarrhea: What Is the Role for the Non-Absorbable? Oxford: Oxford University Press; 2014.

    Google Scholar 

  171. Steffen R, et al. Rifamycin SV-MMX® for treatment of travellers’ diarrhea: equally effective as ciprofloxacin and not associated with the acquisition of multi-drug resistant bacteria. Oxford: Oxford University Press; 2018.

    Google Scholar 

  172. Di Stefano A, et al. Systemic absorption of rifamycin SV MMX administered as modified-release tablets in healthy volunteers. Antimicrob Agents Chemother. 2011;55(5):2122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Connor BA. A Closer Look at AEMCOLO With MMX Technology for the Treatment of Travelers’ Diarrhea. Gastroenterol Hepatol. 2019;15(2):1.

    Google Scholar 

  174. Shayto RH, Abou Mrad R, Sharara AI. Use of rifaximin in gastrointestinal and liver diseases. World J Gastroenterol. 2016;22(29):6638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. DuPont HL, et al. Targeting of rifamycin SV to the colon for treatment of travelers’ diarrhea: a randomized, double-blind, placebo-controlled phase 3 study. J Travel Med. 2014;21(6):369–76.

    Article  PubMed  Google Scholar 

  176. Duncan MB, et al. Use of methylene blue for detection of specialized intestinal metaplasia in GERD patients presenting for screening upper endoscopy. Dig Dis Sci. 2005;50(2):389–93.

    Article  PubMed  Google Scholar 

  177. Di Stefano A, et al. Methylene blue MMX® tablets for chromoendoscopy. Bioavailability, colon staining and safety in healthy volunteers undergoing a full colonoscopy. Contemp Clin Trials. 2018;71:96–102.

    Article  PubMed  Google Scholar 

  178. Repici A, et al. Methylene blue MMX® tablets for chromoendoscopy. Safety tolerability and bioavailability in healthy volunteers. Contemporary clinical trials. 2012;33(2):260–7.

    Article  CAS  PubMed  Google Scholar 

  179. Vermeire S, Rutgeerts P. Current status of genetics research in inflammatory bowel disease. Genes Immun. 2005;6(8):637–45.

    Article  CAS  PubMed  Google Scholar 

  180. Camerini R. Can we treat ulcerative colitis with nutritional supplements? author’s reply. Aliment Pharmacol Ther. 2012;35(4):486–7.

    Article  CAS  Google Scholar 

  181. Wagner CC, et al. Plasma pharmacokinetics and gastrointestinal transit of a new Propionyl-l-Carnitine controlled release formulation. Xenobiotica. 2011;41(11):988–95.

    Article  CAS  PubMed  Google Scholar 

  182. Ghate VM, Chaudhari P, Lewis SA. Physiologically based pharmacokinetic (PBPK) modelling for in vitro-in vivo extrapolation: emphasis on the use of dissolution data. Dissolut Technol. 2019;26(03):18–27.

    Article  CAS  Google Scholar 

  183. Mishra V, et al. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv. 2018;15(8):737–58.

    Article  CAS  PubMed  Google Scholar 

  184. Grangeia HB, et al. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm. 2020;147:19–37.

    Article  CAS  PubMed  Google Scholar 

  185. Venkateshwaran HG. Successful Process Analytical Technology (PAT) implementation in pharmaceutical manufacturing. European Pharmaceutical Review, 2008;(5). https://www.europeanpharmaceuticalreview.com/article/1485/successful-pat-implementation-pharmaceutical-manufacturing/

  186. Shah RB, Tawakkul MA, Khan MA. Process analytical technology: chemometric analysis of Raman and near infra-red spectroscopic data for predicting physical properties of extended release matrix tablets. J Pharm Sci. 2007;96(5):1356–65.

    Article  CAS  PubMed  Google Scholar 

  187. Lukacova V, Woltosz WS, Bolger MB. Prediction of modified release pharmacokinetics and pharmacodynamics from in vitro, immediate release, and intravenous data. AAPS J. 2009;11(2):323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kesisoglou F, Balakrishnan A, Manser K. Utility of PBPK absorption modeling to guide modified release formulation development of gaboxadol, a highly soluble compound with region-dependent absorption. J Pharm Sci. 2016;105(2):722–8.

    Article  CAS  PubMed  Google Scholar 

  189. Shadle, C., et al. Assessment of dose proportionality, absolute bioavailability, and tolerability of gaboxadol in healthy young adults. in Sleep. 2006. Amer Academy Sleep Medicine One Westbrook Corporate Center Ste 920 ….

  190. Crison JR. Physiologically Based Pharmacokinetic Modeling in the Development and Evaluation of Hydrophilic Matrix Tablets. In: Hydrophilic Matrix Tablets for Oral Controlled Release. Springer; 2014. p. 191–203.

    Chapter  Google Scholar 

  191. Basu S, et al. Physiologically based pharmacokinetic modeling to evaluate formulation factors influencing bioequivalence of metoprolol extended-release products. J Clin Pharmacol. 2019;59(9):1252–63.

    CAS  PubMed  Google Scholar 

  192. Abdul S, Chandewar AV, Jaiswal SB. A flexible technology for modified-release drugs: multiple-unit pellet system (MUPS). J Control Release. 2010;147(1):2–16.

    Article  CAS  PubMed  Google Scholar 

  193. Wagner KG, et al. Development of disintegrating multiple-unit tablets on a high-speed rotary tablet press. Eur J Pharm Biopharm. 2000;50(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  194. Vo Anh Q, et al. "Application of FT-NIR analysis for in-line and real-time monitoring of pharmaceutical hot melt extrusion: a technical note." Aaps Pharmscitech 2018;19(8):3425–3429.

  195. Mundada PK, Sawant KK, Mundada VP. Formulation and optimization of controlled release powder for reconstitution for metoprolol succinate multi unit particulate formulation using risk based QbD approach. Journal of Drug Delivery Science and Technology. 2017;41:462–74.

    Article  CAS  Google Scholar 

  196. Sharma, Kapil Dev, and Shobhit Srivastava. "Failure mode and effect analysis (FMEA) implementation: a literature review." J Adv Res Aeronaut Space Sci 2018;5:1–17.

  197. Charoo NA, et al. Quality by design approach for formulation development: a case study of dispersible tablets. Int J Pharm. 2012;423(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  198. Fahmy R, Danielson D, Martinez MN. Quality by design and the development of solid oral dosage forms. In: Long Acting Animal Health Drug Products. Springer; 2013. p. 107–29.

    Chapter  Google Scholar 

  199. Singh G, Pai RS, Devi VK. Optimization of pellets containing solid dispersion prepared by extrusion/spheronization using central composite design and desirability function. J Young Pharm. 2012;4(3):146–56.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Pabari RM, Ramtoola Z. Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets. Int J Pharm. 2012;430(1–2):18–25.

    Article  CAS  PubMed  Google Scholar 

  201. Desai D, et al. Formulation design, challenges, and development considerations for fixed dose combination (FDC) of oral solid dosage forms. Pharm Dev Technol. 2013;18(6):1265–76.

    Article  CAS  PubMed  Google Scholar 

  202. Lee B-J, Ryu S-G, Cui J-H. Controlled release of dual drug-loaded hydroxypropyl methylcellulose matrix tablet using drug-containing polymeric coatings. Int J Pharm. 1999;188(1):71–80.

    Article  CAS  PubMed  Google Scholar 

  203. Robinson JR, Lee VH. Controlled drug delivery: fundamentals and applications/edited by Joseph R Robinson, Vincent HL Lee. New York: Dekker; 1987.

    Book  Google Scholar 

  204. Rathore AS, et al. An overview: Matrix tablet as controlled drug delivery system. Int J Res Dev Pharm Life Sci. 2013;2(4):482–92.

    CAS  Google Scholar 

  205. Nellore RV, et al. Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration. J Control Release. 1998;50(1–3):247–56.

    Article  CAS  PubMed  Google Scholar 

  206. Skelly J, et al. Scale-up of oral extended-release dosage forms. Pharm Technol. 1995;19(5):46–54.

    Google Scholar 

  207. FDA. SUPAC-MR: Modified Release Solid Oral Dosage Forms Scale-Up and Postapproval Changes: Chemistry, Manufacturing, and Controls; In Vitro Dissolution Testing and In Vivo Bioequivalence Documentation. 2020 [cited 2020 Nov 2]; Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/supac-mr-modified-release-solid-oral-dosage-forms-scale-and-postapproval-changes-chemistry.

  208. FDA. Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations. 2020 [cited 2020 Nov 2]; Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-vivo-correlations.

  209. Pouillon L, et al. Head-to-head trials in inflammatory bowel disease: Past, present and future. Nat Rev Gastroenterol Hepatol. 2020;17(6):365–76.

    Article  PubMed  Google Scholar 

  210. McConnell EL, Murdan S, Basit AW. An investigation into the digestion of chitosan (noncrosslinked and crosslinked) by human colonic bacteria. J Pharm Sci. 2008;97(9):3820–9.

    Article  CAS  PubMed  Google Scholar 

  211. Abd Elbary A, Aboelwafa AA, Al Sharabi IM. Once daily, high-dose mesalazine controlled-release tablet for colonic delivery: optimization of formulation variables using Box-Behnken design. Aaps Pharmscitech. 2011;12(4):1454–64.

    Article  CAS  Google Scholar 

  212. Guideline IHT. Stability testing of new drug substances and products. Q1A (R2) Curr Step. 2003;4:1–24.

    Google Scholar 

  213. Simoni SE, et al. Multi-Matrix 5-Aminosalicylic Acid Efficacy in Induction of Remission in Mild-to-Moderate Ulcerative Colitis: A Systematic Review. Int J Health Sci. 2019;7(3):42–51.

    Google Scholar 

  214. Atsuo Kitano S. Japan, 6,025,393, Method For Treatment Of Inflammatory Intestinal Diseases. Osaka: Santen Pharmaceutical Co. Ltd; 2000.

    Google Scholar 

Download references

Acknowledgements

This is NIPER Hyderabad manuscript No.: NIPER-H/2020/M071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriram, A., Tangirala, S., Atmakuri, S. et al. Budding Multi-matrix Technology—a Retrospective Approach, Deep Insights, and Future Perspectives. AAPS PharmSciTech 22, 264 (2021). https://doi.org/10.1208/s12249-021-02133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02133-4

KEY WORDS

Navigation