Skip to main content
Log in

Crystal Structure Determination of New Antimitotic Agent Bis(p-fluorobenzyl)trisulfide

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this research was to investigate the physical characteristics and crystalline structure of bis(p-fluorobenzyl)trisulfide, a new anti-tumor agent. Methods used included X-ray single crystal diffraction, X-ray powder diffraction (XRPD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The findings obtained with X-ray single crystal diffraction showed that a monoclinic unit cell was a = 12.266(1) Å, b = 4.7757(4) Å, c = 25.510(1) Å, β = 104.25(1)°; cell volume = 1,448.4(2) Å3, Z = 4, and space group C2/c. The XRPD studies of the four crystalline samples, obtained by recrystallization from four different solvents, indicated that they had the same diffraction patterns. The diffraction pattern stimulated from the crystal structure data is in excellent agreement with the experimental results. In addition, the identical FT-IR spectra of the four crystalline samples revealed absorption bands corresponding to S–S and C–S stretching as well as the characteristic aromatic substitution. Five percent weight loss at 163.3 °C was observed when TG was used to study the decomposition process in the temperature range of 20–200 °C. DSC also allowed for the determination of onset temperatures at 60.4(1)–60.7(3) °C and peak temperatures at 62.1(3)–62.4(3) °C for the four crystalline samples studied. The results verified that the single crystal structure shared the same crystal form with the four crystalline samples investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. J. Newman, G. M. Gragg, and K. M. Snader. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 66:1022–1037 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. P. K. Lai, and J. Roy. Antimicrobial and chemopreventive properties of herbs and spices. Curr. Med. Chem. 11:1451–1460 (2004).

    PubMed  CAS  Google Scholar 

  3. D. J. Newman, and G. M. Gragg. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67:1216–1238 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Y. W. Chin, M. J. Balunas, H. B. Chai, and A. D. Kinghorn. Drug discovery from natural sources. The AAPS PharmSciTech. 8:E239–E253 (2006).

    CAS  Google Scholar 

  5. G. M. Cragg, and D. J. Newman. A tale of two tumor targets: Topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J. Nat. Prod. 67:232–244 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. B. G. Livett, K. R. Gayler, and Z. Khalil. Drug from the sea: Conopeptides as potential therapeutics. Curr. Med. Chem. 11:1715–1723 (2004).

    PubMed  CAS  Google Scholar 

  7. J. G. Topliss, A. M. Clark, E. Ernst, C. D. Hufford, G. A. R. Johnston, J. M. Rimoldi, and B. J. Weimann. Natural and synthetic substances related to human health. Pure. Appl. Chem. 74:1957–1985 (2002).

    Article  CAS  Google Scholar 

  8. K. H. Lee. Anticancer drug design based on plant-derived natural products. J. Biomed. Sci. 6:236–250 (1999).

    PubMed  CAS  Google Scholar 

  9. N. Darwiche, S. El-Banna, and H. Gali-Muhtasib. Cell cycle modulatory and apoptotic effects of plant-derived anticancer drugs in clinical use or development. Expert. Opin. Drug. Discov. 2:361–379 (2007).

    Article  CAS  Google Scholar 

  10. M. Liscovitch, and Y. Lavie. Cancer multidrug resistance: A review of recent drug discovery research. Idrugs. 5:349–355 (2002).

    PubMed  CAS  Google Scholar 

  11. G. Petrangolini, G. Cassinelli, G. Pratesi, et al. Antitumour and antiangiogenic effects of IDN 5390, a novel C-seco taxane, in a paclitaxel-resistant human ovarian tumour xenograft. British J. Cancer. 90:1464–1468 (2004).

    Article  CAS  Google Scholar 

  12. D. Polizzi, G. Pratesi, M. Tortoreto, R. Supino, A. Riva, E. Bombardelli, and F. Zunino. A novel taxane with improved tolerability and therapeutic activity in a panel of human tumor xenografts. Cancer Res. 59:1036–1040 (1999).

    PubMed  CAS  Google Scholar 

  13. H. An, J. Zhu, X. B. Wang, and X. Xu. Synthesis and antitumor evaluation of new trisulfide derivatives. Bioorg. Med. Chem. Lett. 16:4826–4829 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. X. Xu, H. An, X. B. Wang, inventers. Substituted organosulfur compounds and methods of using thereof. PCT /WO 2005/112933. December 1, 2005; United States Patent Application 2005/0261321. November 24, 2005; Chinese Patent application 200580012460.5. November 17, 2006.

  15. J. R. de Sousa, A. J. Demuner, J. A. Pinheiro, E. Breitmaier, and B. K. Cassels. Dibenzyl trisulphide and trasn-N-methyl-4-methoxyproline from Petiveria alliacea. Phytochem. 29:3653–3655 (1990).

    Article  Google Scholar 

  16. Tropical Plant Database–Anamu (Petiveria alliacea). http://www.rain-tree.com/anamu.htm (accessed 12/20/07).

  17. E. Tedesco, D. Giron, and S. Pfeffer. Crystal structure elucidation and morphology study of pharmaceuticals in development. CrystEngComm. 4:393–400 (2002).

    Article  CAS  Google Scholar 

  18. G. A. Stephenson. Applications of X-ray powder diffraction in the pharmaceutical industry. The Rigaku J. 22:2–15 (2005).

    CAS  Google Scholar 

  19. C. R. Gardner, C. T. Walsh, and O. Almarsson. Drugs as materials: Valuing physical form in drug discovery. Nature Rev. Drug Discov. 3:926–934 (2004).

    Article  CAS  Google Scholar 

  20. Y. Lv, Y. S. Wu, and Q. T. Zheng. The application progress of X-ray diffraction analysis technique in new drug and pharmacy research. Modern Instrument. 3:6–9 and 19 (2004).

    Google Scholar 

  21. United States Pharmacopoeial Convention. X-Ray Diffraction, General test <941>. United States Pharmacopoeia, 25th ed., Rockville, MD, 2002, pp. 2088–2089.

  22. R. E. Dinnebier, P. Sieger, H. Nar, K. Shankland, and W. I. F. David. Structural characterization of three crystalline modifications of telmisartan by single crystal and high-resolution X-ray powder diffraction. J. Pharm. Sci. 89:1465–1479 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. S. L. Morissette, O. Almarsson, M. L. Peterson, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug. Deliv. Rev. 56:275–300 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. A. R. Sheth, and D. J. W. Grant. Relationship between the structure and properties of pharmaceutical crystals. Kona. 23:36–48 (2005).

    CAS  Google Scholar 

  25. Rigaku /MSC (2004). Crystal Structure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

  26. A. Altomare, M. Burla, M. Camalli, et al. SIR 97: A new tool for crystal structure determination and refinement. J. Appl. Cryst. 32:115–119 (1999).

    Article  CAS  Google Scholar 

  27. P. W. Betteridge, J. R. Carruthers, R. L. Cooper, K. Prout, and D. J. Watkin. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Cryst. 36:1487 (2003).

    Article  CAS  Google Scholar 

  28. L. J. Farrugia. ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 30:565 (1997).

    Article  CAS  Google Scholar 

  29. M. C. Etter. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res. 23:120–126 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyun An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, H., Hu, X., Gu, J. et al. Crystal Structure Determination of New Antimitotic Agent Bis(p-fluorobenzyl)trisulfide. AAPS PharmSciTech 9, 551–556 (2008). https://doi.org/10.1208/s12249-008-9081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9081-5

Key words

Navigation