Skip to main content

Advertisement

Log in

Slow Release Formulations of Inhaled Rifampin

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Rifampin microspheres were prepared by spray drying using either polylactic acid (PLA) or poly(lactic-co-glycolic acid) (PLGA) polymers in different drug to polymer ratios (90:10 to 5:95, w/w). The in-vitro release characteristics, particle-size distribution, and cytotoxicity (in an alveolar macrophage cell line) and pharmacokinetics in rats after pulmonary instillation were evaluated. Increasing the polymer content from 10% to 95% slowed down the in vitro drug release with PLGA particles showing a steeper change with increasing polymer content (100% to 20% drug release over 6 h) than PLA particles (88% to 42% drug release over 6 h). PLA microsphere formulations revealed lack of cytotoxicity and a mass median aerodynamic diameter (MMDA) of 2.22–2.86 μm, while PLGA particles were larger (MMDA of 4.67–5.11 μm). Pharmacokinetics differed among the formulations with the 10% PLA formulation showing a distinct sustained release (t max of 2 h vs 0.5 h of free drug) and a systemic bioavailability similar to that of free drug. Formulations with high polymer content showed a lower relative bioavailability (30%). This suggested that an optimal release rate existed for which a distinct amount of drug was delivered over an extended period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tuberculosis Worldwide. Health Protection Agency, 2006; http://www.hpa.org.uk/infections/topics_AZ/tb/worldwide.htm.

  2. E. L. Barrow, G. A. Winchester, J. K. Staas, D. C. Quenelle, and W. W. Barrow. Use of microsphere technology for targeted delivery of rifampin to Mycobacterium tuberculosis-infected macrophages. Antimicrob Agents Chemother. 42:2682–2689 (1998).

    PubMed  CAS  Google Scholar 

  3. S. Connett. TB sourcebook. The complete tuberculosis resource, American Health Consultants, Georgia, 1997.

    Google Scholar 

  4. WHO. World Health Organization Factsheet N104, March 2006. http://www.who.int/mediacentre/factsheets/fs104/en/print.html.

  5. J. D. Grodon. Antituberculous therapy. In L. I. Lutwick (ed.), Tuberculosis. A clinical handbook, Chapman & Hall, New York, 1995, pp. 295–316.

    Google Scholar 

  6. E. Mutschler, and H. Derendorf. Drug Actions. Basic principles and therapeutic aspects, CRC, Ann Arbor, MI, 1995.

    Google Scholar 

  7. P. E. Patterson, M. E. Kimerling, W. C. Bailey, and N. E. Dunlap. Chemotherapy of tuberculosis. In D. Schlossberg (ed.), Tuberculosis and nontuberculous mycobacterial infections, W.B. Saunders Co, PA, 1999, pp. 71–82.

    Google Scholar 

  8. L. N. Friedman. Pulmonary tuberculosis: presentation, diagnosis and treatment. In L. N. Friedman (Ed), Tuberculosis: Current concepts and treatment. CRC, New York, 2001, pp 107–138.

  9. D. A. Mitchison. Basic mechanisms of chemotherapy. Chest. 76(6 Suppl):771–781 (1979).

    Article  PubMed  CAS  Google Scholar 

  10. P. R. Byron. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 75:433–438 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. S. Suarez, R. J. Gonzalez-Rothi, H. Schreier, and G. Hochhaus. Effect of dose and release rate on pulmonary targeting of liposomal triamcinolone acetonide phosphate. Pharm Res. 15:461–465 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lota, and R. Langer. Large porous particles for pulmonary drug delivery. Science. 276:1868–1871 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. R. Vanbever, J. D. Mintzes, J. Wang, J. Nice, D. Chen, R. Batycky, R. Langer, and D. A. Edwards. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 16:1735–1742 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. R. Bodmeier, and H. G. Chen. Preparation of biodegradable poly(+/−)lactide microparticles using a spray-drying technique. J Pharm Pharmacol. 40:754–757 (1988).

    PubMed  CAS  Google Scholar 

  15. Y. Kawashima, S. Y. Lin, M. Ueda, H. Takenaka, and Y. Ando. Direct preparation of solid particulates of aminopyrine–barbital complex (pyrabital) from droplets by a spray-drying technique. J Pharm Sci. 72:514–518 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. Y. F. Maa, P. A. Nguyen, T. Sweeney, S. J. Shire, and C. C. Hsu. Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res. 16:249–254 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. P. O'Hara, and A. J. Hickey. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res. 17:955–961 (2000).

    Article  PubMed  Google Scholar 

  18. H. Takenaka, Y. Kawashima, and S. Y. Lin. Preparation of enteric-coated microcapsules for tableting by spray-drying technique and in vitro simulation of drug release from the tablet in GI tract. J Pharm Sci. 69:1388–1392 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. L. S. C. Wan, P. W. S. Heng, and C. G. H. Chia. Spray drying as a process for microencapsulation and the effect of different coating polymers. Drug Dev Ind Pharm. 18:997–1011 (1992).

    Article  CAS  Google Scholar 

  20. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 65:55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. A. J. Hickey, and T. B. Martonen. Behavior of hygroscopic pharmaceutical aerosols and the influence of hydrophobic additives. Pharm Res. 10:1–7 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. J. B. Lecaillon, N. Febvre, J. P. Metayer, and C. Souppart. Quantitative assay of rifampicin and three of its metabolites in human plasma, urine and saliva by high-performance liquid chromatography. J Chromatogr. 145:319–324 (1978).

    Article  PubMed  CAS  Google Scholar 

  23. J. Woo, C. L. Wong, R. Teoh, and K. Chan. Liquid chromatographic assay for the simultaneous determination of pyrazinamide and rifampicin in serum samples from patients with tuberculous meningitis. J Chromatogr. 420:73–80 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. Food and Drug Administration. Bioanalytical method validation. Guidance for industry. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CEDER), Center for Veterinary Medicine (CVM). http://www.fda.gov/CDER/GUIDANCE/4252fnl.pdf, 2001.

  25. M. S. Reza, M. A. Quadir, and S. S. Haider. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. J Pharm Pharm Sci. 6:282–291 (2003).

    PubMed  CAS  Google Scholar 

  26. R. Sharma, D. Saxena, A. K. Dwivedi, and A. Misra. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res. 18:1405–1410 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. T. W. Harrison, and A. E. Tattersfield. Plasma concentrations of fluticasone propionate and budesonide following inhalation from dry powder inhalers by healthy and asthmatic subjects. Thorax. 58:258–260 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Q. Ain, S. Sharma, S. K. Garg, and G. K. Khuller. Role of poly [DL-lactide-co-glycolide] in development of a sustained oral delivery system for antitubercular drug(s). Int J Pharm. 239(1–2):37–46 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Hochhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coowanitwong, I., Arya, V., Kulvanich, P. et al. Slow Release Formulations of Inhaled Rifampin. AAPS J 10, 342–348 (2008). https://doi.org/10.1208/s12248-008-9044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9044-5

Key words

Navigation