Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (6): 401-408    DOI: 10.11901/1005.3093.2015.589
  研究论文 本期目录 | 过刊浏览 |
V和Si对珠光体车轮钢显微组织和力学性能的影响规律*
左越1,2, 周世同2,3, 李昭东2(), 潘涛2, 项金钟1, 雍岐龙2
1. 云南大学物理科学技术学院 昆明 650091
2. 钢铁研究总院工程用钢研究所 北京 100081
3. 昆明理工大学材料科学与工程学院 昆明 650093
Effect of V and Si on Microstructure and Mechanical Properties of Medium-carbon Pearlitic Steels for Wheel
ZUO Yue1,2, ZHOU Shitong2,3, LI Zhaodong2,**(), PAN Tao2, XIANG Jinzhong1, YONG Qilong2
1. School of Physical Science and Technology, Yunnan University, Kunming 650091, China
2. Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
3. Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

左越, 周世同, 李昭东, 潘涛, 项金钟, 雍岐龙. V和Si对珠光体车轮钢显微组织和力学性能的影响规律*[J]. 材料研究学报, 2016, 30(6): 401-408.
Yue ZUO, Shitong ZHOU, Zhaodong LI, Tao PAN, Jinzhong XIANG, Qilong YONG. Effect of V and Si on Microstructure and Mechanical Properties of Medium-carbon Pearlitic Steels for Wheel[J]. Chinese Journal of Materials Research, 2016, 30(6): 401-408.

全文: PDF(1724 KB)   HTML
摘要: 

利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及拉伸和冲击试验等方法研究了V(0.03%-0.12%)(质量分数, 下同)、Si含量(0.32%-0.89%)对中碳(0.54%)珠光体车轮钢显微组织及力学性能的影响。结果表明: 提高V含量细化了实验钢的奥氏体晶粒尺寸、珠光体团尺寸及其片层间距, 并且提高了铁素体体积分数。随着V含量的提高, 由于VC沉淀强化和细化晶粒的作用, 室温屈服强度和-20℃冲击韧性得到改善; 但软相(先共析铁素体)增多, 室温抗拉强度降低。提高Si含量显著降低了铁素体体积分数和细化了珠光体片层间距, 略细化奥氏体晶粒和珠光体团尺寸; Si也促进VC的析出但作用很小。Si主要以固溶强化和细化片层间距的方式提高屈服强度和抗拉强度。结合适中含量的V(0.07%-0.08%)微合金化和较高含量的Si(0.8%-0.9%)合金化, 可以使中碳珠光体钢获得较好的强韧性匹配。

关键词 金属材料车轮钢微合金化晶粒细化相变强韧性    
Abstract

The effect of V and Si on the microstructure and mechanical properties of medium-carbon pearlitic steels for wheel was studied by means of OM、SEM and TEM, as well as tensile and impact tests. The results showed that the austenite grain size, the pearlite colony size and interlamellar spacing were significantly refined by increasing V content, which also led to an increase in the volume fraction of proeutectoid ferrite of the steels. With the increasing of V content, the yield strength at room temperature and the impact toughness at -20℃were enhanced due to precipitation strengthening and grain refinement effects of VC. However, the tensile strength at room temperature was decreased due to the increasing of the soft phase, i.e., proeutectoid ferrite. The increase of Si content resulted in the great decrease of proeutectoid ferrite and the significant refinement of pearlite interlamellar spacing but the slight refinement of austenite grain size. Si addition also promoted the VC precipitation but had only a little influence. The yield- and tensile-strength were enhanced mainly by the effect of solid solution strengthening and the refinement of pearlite interlamellar spacing due to Si addition. The balance of strength and toughness in medium-carbon pearlite steels could be effectively optimized by microalloying with the combination of medium 0.07%-0.08%V(mass fraction) and relatively high 0.8%-0.9%Si (mass fraction).

Key wordsmetallic material    wheel steel    microalloying    grain refinement    phase transformation    strength and toughness
收稿日期: 2015-10-18     
ZTFLH:  TG142  
基金资助:* 国家重点基础研究发展计划项目2015CB654803和国家高技术研究发展计划项目2015AA034302资助
作者简介: 本文联系人: 李昭东
No. C Si Mn P S Cr V Als N
1#(0.88Si-0.03V) 0.54 0.88 0.78 0.0079 0.0077 0.17 0.030 0.020 0.0014
2#(0.89Si-0.074V) 0.55 0.89 0.78 0.0068 0.0067 0.16 0.074 0.020 0.0018
3#(0.87Si-0.12V) 0.54 0.87 0.78 0.0072 0.0078 0.18 0.120 0.021 0.0016
4#(0.32Si-0.075V) 0.53 0.32 0.77 0.0068 0.0083 0.16 0.075 0.016 0.0010
表1  实验钢化学成分
图1  实验钢奥氏体晶粒形貌的金相照片
No. Austenite grain size/μm Ferrite volume fraction / % Pearlite colony size/μm Pearlite interlamellar spacing /μm
1# 23.1±1.2 4.3 9.8±1.3 0.172±0.02
2# 20.1±0.5 12.2 7.4±0.9 0.147±0.02
3# 14.9±0.7 21.4 5.8±0.4 0.140±0.02
4# 21.4±0.6 19.5 7.7±0.8 0.159±0.02
表2  实验钢的奥氏体晶粒尺寸、先共析铁素体体积分数、珠光体团尺寸与片层间距
图2  实验钢先共析铁素体/珠光体组织的金相照片
图3  实验钢先共析铁素体/珠光体组织的SEM照片
No. Yield strength / MPa Tensile strength / MPa Total elongation / % KV2 /J (-20℃)
1# 511 914 19.0 10
2# 531 907 21.0 14
3# 561 892 21.0 16
4# 485 813 22.0 14
表3  实验钢的室温拉伸性能和-20℃冲击性能
图4  名义V含量对中碳钢奥氏体固溶C/V含量的影响
图5  0.87Si-0.12V钢中VC析出相的TEM照片 (a) 先共析铁素体中; (b) 珠光体中; (c) 析出相的EDS能谱
图6  2#和4#钢不同冷速下的相变温度(860℃奥氏体化)
图7  Si含量对中碳钢奥氏体固溶C/V含量的影响
图8  实验钢的先共析铁素体和珠光体的显微硬度
图9  实验钢冲击断口形貌
1 YONG Qilong, Secondary Phase in Steels (Beijing, Metallurgical Industry Press, 2006) p.8
1 (雍岐龙, 钢铁材料中的第二相(北京, 冶金工业出版社, 2006)p.8)
2 DONG Han, Advanced Steel Materials (Beijing, Science Press, 2008)p..103
2 (董瀚, 先进钢铁材料(北京, 科学出版社, 2008)p.103)
3 S. Parsons, D. Edmonds, Microstructure and mechanical properties of medium-carbon ferrite-pearlite steel microalloyed with vanadium, Materials Science and Technology, 3(11), 894(1987)
4 F. Ishikawa, T. Takahashi, T. Ochi, Intragranular ferrite nucleation in medium-carbon vanadium steels, Metall. Mater. Trans. A, 25(5), 929(1994)
doi: 10.1007/BF02652268
5 B. Garbarz, F. Pickering, Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium, Materials Science and Technology, 4(4), 328(1988)
6 G. Dunlop, C. Carlsson, G. Frimodig, Precipitation of VC in ferrite and pearlite during direct transformation of a medium carbon microalloyed steel, Metallurgical Transactions A, 9(2), 261(1978)
doi: 10.1007/BF02646709
7 LI Yi, YANG Zhongmin, The effects of V on phase transformation of high carbon steel during continuous cooling, Acta Metall. Sin., 46(12), 1501(2010)
7 (李翼, 杨忠民, V对高碳钢连续冷却时组织转变的影响, 金属学报, 46(12), 1501(2010))
doi: 10.3724/SP.J.1037.2010.00284
8 A. Ekberg, P. Sotkovszki, Anisotropy and rolling contact fatigue of railway wheels, International Journal of Fatigue, 23(1), 29(2001)
doi: 10.1016/S0142-1123(00)00070-0
9 L. Holappa, V. Ollilainen, W. Kasprzak, The effect of silicon and vanadium alloying on the microstructure of air cooled forged HSLA steels, Journal of Materials Processing Technology, 109(2), 78(2001)
doi: 10.1016/S0924-0136(00)00778-0
10 T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito, T. Maki, Phase transformation from fine-grained austenite, ISIJ International, 48(8), 1038(2008)
doi: 10.2355/isijinternational.48.1038
11 N. Ralik, G. Lorimer, N. Ridlel, An investigation of manganese partitioning during the austenite-pearlite transformation using analltical electron microscopl, ActaMetallurgica, 22(10), 1249(1974)
doi: 10.1016/0001-6160(74)90138-2
12 N. Ridley, A review of the data on the interlamellar spacing of pearlite, Metallurgical Transactions A, 15(6), 1019(1984)
doi: 10.1007/BF02644694
13 K. Han, Alloy additions on solubility of alloy carbides in steels, ScriptaMetallurgica et Materialia, 28(6), 699(1993)
doi: 10.1016/0956-716X(93)90037-S
14 K. Han, G. Smith, D. Edmonds, Pearlite phase transformation in Si and V steel, Metall Mater Trans A, 26(7), 1617(1995)
doi: 10.1007/BF02670750
15 T. Gladman, I. McIvor, F. Pickering, Some aspects of the structure-property relationships in high-C ferrite-pearlite steels, J. Iron Steel Inst., 210(12), (916)1972
16 H. Sakamoto, K. Toyama, K. Hirakawa, Fracture toughness of medium-high carbon steel for railroad wheel, Mat.Sci.Eng.a-Struct, 285(1), 288(2000)
doi: 10.1016/S0921-5093(00)00648-1
17 O. Modi, N. Deshmukh, D. Mondal, A. Jha, A. Yegneswaran, H. Khaira, Effect of interlamellar spacing on the mechanical properties of 0.65% C steel, Materials Characterization, 46(5), 347(2001)
18 J. M. Hyzak, I. M. Bernstein, The role of microstructure on the strength and toughness of fully pearlitic steels, Metallurgical Transactions A, 7(8), 1217(1976)
doi: 10.1007/BF02656606
19 T. Takahashi, M. Nagumo, Y. Asano, Microstructures dominating the ductility of eutectoid pearlitic steels. Journal of the Japan Institute of Metals, 42(7), 708(1978)
20 Y. J. Park, I. M. Bernstein, The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel, Metallurgical Transactions A, 10(11), 1653(1979)
doi: 10.1007/BF02811698
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.