Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T19:28:43.975Z Has data issue: false hasContentIssue false

Geology and mineralogy of Li mineralization in the Central Iberian Zone (Spain and Portugal)

Published online by Cambridge University Press:  02 January 2018

E. Roda-Robles*
Affiliation:
Departamento Mineralogía y Petrología, Univ. País Vasco (UPV/EHU), Apdo. 644, 48080-Bilbao, Spain
A. Pesquera
Affiliation:
Departamento Mineralogía y Petrología, Univ. País Vasco (UPV/EHU), Apdo. 644, 48080-Bilbao, Spain
P. P. Gil-Crespo
Affiliation:
Departamento Mineralogía y Petrología, Univ. País Vasco (UPV/EHU), Apdo. 644, 48080-Bilbao, Spain
R. Vieira
Affiliation:
Sojitz Beralt Tin & Wolfram (Portugal) S.A., Portugal Instituto Ciências da Terra (Pólo da UP), Porto, Portugal
A. Lima
Affiliation:
Instituto Ciências da Terra (Pólo da UP), Porto, Portugal Departamento Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Portugal
I. Garate-Olave
Affiliation:
Departamento Mineralogía y Petrología, Univ. País Vasco (UPV/EHU), Apdo. 644, 48080-Bilbao, Spain
T. Martins
Affiliation:
Manitoba Geological Survey, 360-1395 Ellice Av., Winnipeg, Manitoba R3G 3P2, Canada
J. Torres-Ruiz
Affiliation:
Departamento de Mineralogía y Petrología, Universidad de Granada, 18071 Granada, Spain
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lithium mineralization is common in the Central Iberian Zone and, to a lesser extent, in the Galizia-Trás-OsMontes Zone of Spain and Portugal, occurring along a ∼500 km-long NNW-SSE striking belt. There are different styles of Li mineralization along this belt; they are mainly associated with aplite-pegmatite bodies and, to a much lesser extent, with veins of quartz and phosphate. Lithium mineralization in the Central Iberian Zone may be classified into four types: aplite-pegmatite dykes occurring in pegmatitic fields, Li mineralization associated with leucogranitic cupolas, beryl-phosphate pegmatites and quartz-montebrasite veins. The main Li minerals of these bodies include Li-mica, spodumene and/or petalite in the pegmatitic fields and leucogranitic cupolas; triphylite–lithiophilite in the beryl-phosphate pegmatites, and amblygonite–montebrasite in the quartz-montebrasite veins. The origin of these different styles of mineralization is considered to be related to differentiation of peraluminous melts, which were generated by partial melting of metasedimentary rocks during the Variscan orogeny. On the basis of paragenesis and chemical composition, the pegmatitic fields and Li mineralization associated with granitic cupolas record the highest fractionation levels, whereas the beryl-phosphate pegmatites and quartz-montebrasite veins show lower degrees of fractionation. There are a number of textural and mineralogical indicators for Li exploration in the Central Iberian Zone and in the Galizia-Trás-Os-Montes Zone, with the highest economic potential for Li being in the pegmatite fields.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

References

Antunes, I.M.H..R., Neiva, A.M.R.., Ramos, J.M.F.., Silva, P.B., Silva, M.M.V..G. and Corfu, F. (2013) Petrogenetic links between lepidolite-subtype aplite-pegmatite, aplite veins and associated granites at Segura (central Portugal). Chemie der Erde — Geochemistry, 73, 323341 CrossRefGoogle Scholar
Arenas, R., Martínez, Catalán J.R. and Díaz, arcía F. (2004) Zona de Galicia Trás Os Montes, introducción. Pp. 133-135 in: Geología de España (J.A. Vera, editor). Sociedad Geológica de España, Instituto Geológico y Minero de España, Madrid.Google Scholar
Azor, A., González Lodeiro, F. and Simancas, J.F. (1994) Tectonic evolution of the boundary between the Central Iberian and Ossa-Morena zones (Variscan belt, southwest Spain). Tectonics, 13, 4561. CrossRefGoogle Scholar
Bea, F. (2004) La naturaleza del magmatismo de la Zona Centro Ibérica: consideraciones generales y ensayo de correlación. Pp. 128133 in: Geología de España (J.A. Vera, editor). Sociedad Geológica de España, Instituto Geológico y Minero de España, Madrid.Google Scholar
Bea, F., Fershtater, G.B. and Corretgé, L.G. (1992) The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos, 29, 4356 CrossRefGoogle Scholar
Bea, F., Montero, P. and Molina, J.F. (1999) Mafic precursors, peraluminous granitoids, and late lampro-phyres in the Avila batholith: A model for the generation of Variscan batholiths in Iberia. Journal of Geology, 107,399419 CrossRefGoogle Scholar
Bea, F., Montero, P. andZinger, T (2003) The nature, origin, and thermal influence of the granite source layer of Central Iberia. Journal of Geology, 111,579595 CrossRefGoogle Scholar
Bea, F., Fershtater, G.B., Montero, P., Smirnov, V.N. and Molina, J.F. (2005) Deformation-driven differentiation of granitic magma: the Stepninsk pluton of the Uralides, Russia. Lithos, 81, 209233. CrossRefGoogle Scholar
Carvalho, J.M.F. and Farinha, J.A.L..B. (2004) Lithium potentialities in Northern Portugal. 17th Industrial Minerals International Congress, Barcelona, Spain, pp. 110.Google Scholar
Černý, P. and Ercit, T S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026. CrossRefGoogle Scholar
Černý, P. and Ferguson, R.B. (1972) The Tanco pegmatite at Bernic Lake, Manitoba; IV, Petalite and spodumene relations. The Canadian Mineralogist, 11, 660678. Google Scholar
Charoy, B. and Noronha, F (1996) Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). Journal of Petrology, 37, 7394. CrossRefGoogle Scholar
Charoy, B., Noronha, F and Lima, A. (2001) Spodumene - petalite - eucryptite: Mutual relationships and pattern of alteration in li-rich aplite-pegmatite dykes from Northern Portugal. The Canadian Mineralogist, 39, 729746. CrossRefGoogle Scholar
Christmann, P., Gloaguen, E., Labbé, J.-F., Melleton, J. and Piantone, P. (2015) Global lithium resources and sustainability issues. Pp. 1-40 in: Lithium Process Chemistry. Resources, Extraction, Batteries, and Recycling (A. Chagnes and J. Swiatowska, editors). Elsevier, 40 pp.Google Scholar
Dias, P.A., Pereira, B., Azavedo, J., Oliveira, J., Leal Gomes, C. and Carvalho, J. (2013) Pegmatite product¬ive terrains in the variscan granite hosts from northern and central portugal. 23rd International Mining Congress & Exhibition of Turkey, Pp. 2121-2129.Google Scholar
Díez Balda, M.A., Vegas, R. and González Lodeiro, F. (1990) Structure of the Central Iberian Zone. Autochthonous Sequences. Structure. Pp. 172-188 in Pre-Mesozoic Geology of Iberia.(R.D. Dallmeyer and E. Martínez García, editor). Springer-Verlag, Berlin.Google Scholar
Dingwell, D.B., Hess, K.U. and Knoche, R. (1996) Granite and granitic pegmatite melts: Volumes and viscosities. Transactions Of The Royal Society Of Edinburgh — Earth Sciences, 87, 6572 CrossRefGoogle Scholar
Farias, P., Gallastegui, G., González Lodeiro, F., vMarquínez J., Martín-Parra, L.M., Martínez, Catalán J.R., de Pablo Maciá, J.G. and Rodríguez-Fernández, L.R. (1987) Aportaciones al conocimiento de la litoestratigrafia y estructura de Galicia central. Memórias da Faculdae de Ciencias, Universidade do Porto, 1, 411431. Google Scholar
Fuertes-Fuente, M. and Martín-Izard, A. (1998) The Forcarei Sur rare-element granitic pegmatite field and associated mineralization, Galicia, Spain. The Canadian Mineralogist, 36, 303325 Google Scholar
Gallego Garrido, M. (1992) Las mineralizaciones de Li asociadas a magmatismo ácido en Extremadura y su encuadre en la Zona Centro-Ibérica.Tesis Doctoral, Universidad Complutense de Madrid, Spain.Google Scholar
Garate-Olave, I., Roda-Robles, E., Gil-Crespo, P.P. and Pesquera, A. (2014) Caracterización petrográfica y geoquímica de las micas asociadas al sistema granito-pegmatitas del área de Tres Arroyos (Alburquerque, Badajoz). Macla, 19.Google Scholar
Garção, J.C.S.. (1927) Minas de Lítio e estanho. Pp. 25-31 in: Boletim de Minas. Imprensa Nacional, Lisbon.Google Scholar
Julivert, M., Fontboté, J.M., Ribero, A. and Nabais-Conde, L.E. (1972) Mapa tectónico de la Península Ibérica y Baleares scale 1:1.000.000. Memoria explicativa.Instituto geológico y Minero de España, Spain, pp. 113.Google Scholar
Leal Gomes, C. (1994) Estudo estructural eparagenético de um sistema pegmatóide granítico. O campo aplito-pegmatitico de Arga Minho, Portugal.PhD thesis, Universidade do Minho, Portugal.Google Scholar
Leal Gomes, C., Azevedo, A., Lopes Nunes, J. and Dias, P.A. (2009) Phosphate fractionation in pegmatites of Pedra da Moura II claim — Ponte da Barca — Portugal. Estudos Geológicos, 19, 172176.Google Scholar
Lima, A. (2000) Estrutura, Mineralogia e Génese dos Filões Aplitopegmatíticos com Espodumena da Região do Barroso-Alvão (Norte de Portugal)|Univ. Porto, Portugal and INPL, Nancy 270 pp.Google Scholar
Lima, A., Rodrigues, R., Guedes, A. and Novák, M. (2009) The rare elements-rich granite of Seixoso Area (Outeiro Mine). Preliminary results. Estudos Geológicos, 19, 182187. Google Scholar
London, D. (2008) Pegmatites. The Canadian Mineralogist, Special Publication, 10,pp. 347.Google Scholar
London, D., Evensen, J.M., Fritz, E., Icenhower, J.P., Morgan VI, G.B. and Wolf, M.B. (2001) Enrichment and accomodation of manganese in granite-pegmatite systems. Geochimica Et Cosmochimica Acta, Eleventh Annual V M. Goldschmidt Conference, May 20-24, 2001, Hot Springs, Virginia. Abstract n° 3369.Google Scholar
Martín-Izard, A., Reguilón, R. and Palero, F. (1992) Las mineralizaciones litiníferas del oeste de Salamanca y Zamora. Estudios Geológicos, 48, 913 CrossRefGoogle Scholar
Martínez, Catalán J.R. (1985) Estratigrafia y estructura del Domo de Lugo : (Sector Oeste de la Zona Asturoccidental-leonesa). 324 pp. Fundacion Coruña “Pedro Barrié de la Maza,Conde Fenosa” La Coruña.Google Scholar
Martínez, Catalán J.R., Arenas, R., Díaz García, F., Rubio Pascual, F.J., Abati, J. and Marquínez, J. (1996) Variscan exhumation of a subducted paleozoic continental margin: The basal units of the Ordenes Complex, Galicia, NW Spain. Tectonics, 15, 106121. CrossRefGoogle Scholar
Martínez, Catalán J.R., Martínez Poyatos, D. and Bea, F. (2004) Zona Centroibérica: Introducción. Pp. 6869 in: Geología de España (J.A. Vera, editor). Sociedad Geológica de España, Instituto Geológico y Minero de España, Madrid.Google Scholar
Martínez-Fernández, F.J. (1974) Estudio del área metamórfica y granítica de los Arribes del Duero (Prov. de Salamancay Zamora). PhD Thesis, Univ. de Salamanca, Spain.Google Scholar
Martínez, F.J., Julivert, M., Sebastián, A., Arboleda, M.L. and Gil-Ibarguchi, J.I. (1988) Structural and thermal evolution of high-grade areas in the northwestern parts of the Iberian Massif. American Journal of Science, 288,969996 CrossRefGoogle Scholar
Martins, T., Roda-Robles, E., Lima, A. and de Parseval, P. (2012) Geochemistry and Evolution of Micas in the Barroso-Alvao Pegmatite Field, Northern Portugal. The Canadian Mineralogist, 50, 11171129. CrossRefGoogle Scholar
Mason, B. (1941) Minerals of the Varuträsk pegmatite. XXIII. Some iron-manganese phosphate minerals and their alteration products, with special reference to material from Varuträsk. Geolpgoske Föreniugen i Stockholm Förhandlgar, 63, 2534. Google Scholar
Moyen, J.-F., Martin, H., Jayananda, M. and Auvray, B. (2003) Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Research, 127,103123 CrossRefGoogle Scholar
Neiva, A.M.R.. and Ramos, J.M.F. (2010) Geochemistry of granitic aplite-pegmatite sills and petrogenetic links with granites, Guarda-Belmonte area, central Portugal. European Journal of Mineralogy, 22, 837854. CrossRefGoogle Scholar
Neiva, A.M.R.., Ramos, J.M.F.. and Silva, P.B. (2011) Alguns aplito-pegmatitos graníticos com minerais de Li das regiões centro e norte de Portugal. Pp. 2326 in: Valorização de Pegmatitos Litiníferos (L.M.P. Martins D.P.S.. de Oliveira R. Silva H.M.C.. Viegas and R.C. Vilas Bôas, editors). Lisbon, Portugal.Google Scholar
Noronha, F., Ramos, J.M.F.., Rebelo, J., Ribeiro, A. and Ribeiro, M.L. (1981) Essai de corrélation des phases de déformation hercyniennes dans le nord-ouest Péninsulaire. Leidse Geologische Mededelingen, 52 (1), 8791.Google Scholar
Patiño Douce, A.E. and Johnston, A.D. (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107,202218 CrossRefGoogle Scholar
Pérez-Estaún, A., Bea, F., Bastida, F., Marcos, A., Martínez Catalán, J.R., Martínez Poyatos, D., Arenas, R., Díaz García, F., Azor, A., Simancas, J.F. and González Lodeiro, E (2004) La Cordillera Varisca europea: El Macizo Ibérico. Pp. 2125 in: Geología de España (J. A. Vera, editor). Sociedad Geológica de España, Instituto Geológico y Minero de España, Madrid.Google Scholar
Pesquera, A., Torres Ruiz, J., Gil-Crespo, P.P. and Velilla, N. (1999) Chemistry and genetic implications of tour¬maline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain). American Mineralogist, 84, 5569 CrossRefGoogle Scholar
Peucat, J.J., Jegouzo, P., Vidal, P. and Bernard-Griffiths, J. (1988) Continental crust formation seen through the Sr and Nd isotope systematics of S-type granites in the Hercynian belt of western France. Earth and Planetary Science Letters, 88, 6068. CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F (1985) “PAP” j(pz) procedure for improved quantitative microanalysis. Pp. 104-106 in: Microbeam Analysis.San Francisco Press, San Fransisco, USA.Google Scholar
Propach, G. (1976) Models of filter differentiation. Lithos, 9, 203209. CrossRefGoogle Scholar
Puziewicz, J. and Johannes, W. (1988) Phase equilibria and compositions of Fe-Mg-Al minerals and melts in water-saturated peraluminous granitic systems. Contributions to Mineralogy and Petrology, 100,156168 CrossRefGoogle Scholar
Quensel, P. (1937) Minerals of the Varuträsk pegmatite. I: The lithium-manganese phosphates. Geologiska Föreningeni Stockholm Förhandlingar, 59, 7796 CrossRefGoogle Scholar
Roda, E., Fontan, F., Pesquera, A. and Velasco, F (1996) The phosphate mineral association of the granitic pegmatites of the Fregeneda area (Salamanca, Spain). Mineralogical Magazine, 60, 767778 CrossRefGoogle Scholar
Roda, E., Pesquera, A., Velasco, F and Fontan, F (1999) The granitic pegmatites of the Fregeneda area (Salamanca, Spain): characteristics and petrogenesis. MineralogicalMagazine, 63,535558 Google Scholar
Roda, E., Pesquera, A., Fontan, F. and Keller, P. (2004) Phosphate mineral associations in the Canada pegmatite (Salamanca, Spain): Paragenetic relation¬ships, chemical compositions, and implications for pegmatite evolution. American Mineralogist, 89, 110125. CrossRefGoogle Scholar
Roda, E., Pesquera, A., Gil-Crespo, P.P., Torres-Ruiz, J. and Fontan, F. (2005) Origin and internal evolution of the Li-F-Be-B-P-bearing Pinilla de Fermoselle peg¬matite (Central Iberian Zone, Zamora, Spain). American Mineralogist, 90, 18871899. CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P., Torres-Ruiz, J. and De Parseval, P. (2006) Mineralogy and geochemistry of micas from the Pinilla de Fermoselle pegmatite (Zamora, Spain). European Journal of Mineralogy, 18, 369377. CrossRefGoogle Scholar
Roda-Robles, E., Mateus, S., Vieira, R., Martins, T., Vide, R. and Lima, A. (2008) Phosphate mineral associations in the Seixeira pegmatite (Bendada, Sabugal, Guarda, Portugal): preliminary results. IX CGPLP— IX Congresso de Geoquímica dos Países de Língua Portuguesa, Abstracts, p. 39.Google Scholar
Roda-Robles, E., Vieira, R., Lima, A. andPesquera-Pérez, A. (2009) Petrogenetic links between granites and pegmatites in the Fregeneda-Almendra area (Salamanca, Spain and Guarda, Portugal): new insights from 40Ar/39Ar dating in micas. Estudos Geológicos, 19, 305310. Google Scholar
Roda-Robles, E., Galliski, M., Nizamoff, J., Simmons, W., Keller, P., Falster, A. and Hatert, F. (2011) Cation partitioning between minerals of the triphylite± graftonite ± sarcopside association in granitic pegma¬tites. Contributions to the 5th International Symposium on Granitic Pegmatites, pp. 161164, Mendoza (Argentina).Google Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P. and Torres-Ruiz, J. (2012a) The Puentemocha beryl-phosphate granitic pegmatite, Salamanca, Spain: Internal structure, petrography and mineralogy. The Canadian Mineralogist, 50,15731587 CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P. and Torres-Ruiz, J. (2012b) From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain). Lithos, 153,192207 CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P., Garate-Olave, I. and Ostaikoetxea-Garcia, U. (2013) Textural and mineralogical features of the Li-F-Sn-bearing pegmatitic rocks from Castillejo de Dos Casas (Salamanca, Spain): preliminary results. 6th International Symposium On Granitic Pegmatites, pp. 118119.Google Scholar
Roda-Robles, E., Pesquera, A., Lima, A., Vieira, R. and Gil-Crespo, P.P. (2012c) Origin and significance of phosphate minerals in the Central Iberian Zone (Spain and Portugal): implications for the behaviour of P during the Variscan magmatism. European Mineralogical Conference EMC2012,, 1, p. 381.Google Scholar
Roda-Robles, E., Pesquera, A., de Madinabeitia, S.G., Ibarguchi, J.I.G.., Nizamoff, J., Simmons, W., Falster, A. and Galliski, M.A. (2014) On the geochemical character of primary Fe-Mn phosphates belonging to the triphylite-lithiophilite, graftonite-beusite, and tri-plite-zwieselite series: First results and implications for pegmatite petrogenesis. The Canadian Mineralogist, 52,321335 CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, Garate-Olave, I., P.P. and Torres-Ruiz (2015) The Li-rich aplopegmatite from Castillejo de Dos Casas (Salamanca, Spain): Example of a highly fractionated granite-pegmatite system. Proceedings SGA2015, vol.2, 1115.Google Scholar
Sisson, T.W. and Bacon, C.R. (1999) Gas-driven filter pressing in magmas. Geology, 27, 613616. 2.3.CO;2>CrossRefGoogle Scholar
Sylvester, P.J. (1998) Post-collisional strongly peralumin-ous granites. Lithos, 45,2944 CrossRefGoogle Scholar
Tartese, R. and Boulvais, P. (2010) Differentiation of peraluminous leucogranites “en route” to the surface. Lithos, 114,353368 CrossRefGoogle Scholar
Thompson, A.B. (1999) Some time-space relationships for crustal melting and granitic intrusion at various depths. Geological Society, London, Special Publications, 168,725 CrossRefGoogle Scholar
Tischendorf, G., Rieder, M., Forster, H.J., Gottesmann, B. and Guidotti, C.V. (2004) A new graphical presenta¬tion and subdivision of potassium micas. Mineralogical Magazine, 68,649667 CrossRefGoogle Scholar
Tkachev, A.V. (2011) Evolution of metallogeny of granitic pegmatites associated with orogens throughout geo¬logical time. Geological Society, London, Special Publications, 350,723 CrossRefGoogle Scholar
Vieira, R., Roda-Robles, E., Pesquera, A. and Lima, A. (2011) Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). American Mineralogist, 96, 637645 CrossRefGoogle Scholar