Skip to main content

Advertisement

Log in

Aberrant HOXA10 Methylation in Patients With Common Gynecologic Disorders: Implications for Reproductive Outcomes

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

HomeoboxA10 (HOXA10) is a transcription factor that is crucial for the development and patterning of the uterus during embryogenesis. In the adult endometrium, HOXA10 expression is regulated by steroid hormones and embryonic signals. Expression of sufficient HOXA10 messenger RNA is essential to endometrial receptivity and embryo implantation. Aberrant methylation is believed to alter the expression of HOXA10. Methylation of this gene may be associated with decreased fertility, implantation defects, and/or reproductive wastage seen in certain disease states that affect the female reproductive tract. This study describes the differences in methylation patterns of HOXA10 gene in uterine myomas, endometriosis, uterine septum, Asherman syndrome, or uterine polyps of women undergoing hysteroscopic surgery. In the endometrium of uteri with polyps, submucosal myomas, and intramural myomas, there were CpG sites within the HOXA10 gene that were highly methylated compared to controls. The HOXA10 gene in women with endometriosis was hypomethylated compared to controls. DNA methylation may be a common molecular mechanism that results in reproductive dysfunction seen in gynecologic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Angioni S, Cela V, Sedda F, et al. Focusing on surgery results in infertile patients with deep endometriosis. Gynecol Endocrinol. 2015; 31(8):595–598.

    PubMed  Google Scholar 

  2. Macer ML, Taylor HS. Endometriosis and infertility:a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstet Gynecol Clin North Am. 2012; 39(4):535–549.

    PubMed  PubMed Central  Google Scholar 

  3. Ghahiry AA, Refaei Aliabadi E, Taherian AA, et al. Effectiveness of hysteroscopic repair of uterine lesions in reproductive outcome. Int J Fertil Steril. 2014; 8(2):129–134.

    PubMed  PubMed Central  Google Scholar 

  4. Matson PL, Yovich JL. The treatment of infertility associated with endometriosis by in vitro fertilization. Fertil Steril. 1986; 46(3):432–434.

    CAS  PubMed  Google Scholar 

  5. Bamhart K, Dunsmoor-Su R, Coutifaris C. Effect of endometriosis on in vitro fertihzation. Fertil Steril. 2002; 77(6):1148–1155.

    Google Scholar 

  6. Kuivasaari P, Hippelainen M, Anttila M, Heinonen S. Effect of endometriosis on IVF/ICSI outcome:stage III/IV endometriosis worsens cumulative pregnancy and live-bom rates. Hum Reprod. 2005; 20(11):3130–3135.

    PubMed  Google Scholar 

  7. Matsuzaki S, Canis M, Darcha C, Pouly JL, Mage G. HOXA-10 expression in the mid-secretory endometrium of infertile patients with either endometriosis, uterine fibromas or unexplained infertility. Hum Reprod. 2009; 24(12):3180–3187.

    CAS  PubMed  Google Scholar 

  8. Rackow BW, Taylor HS. Submucosal uterine leiomyomas have a global effect on molecular determinants of endometrial receptivity. Fertil Steril. 93(6):2027–2034.

  9. Daftary GS, Taylor HS. Endocrine regulation of HOX genes. Endocr Rev. 2006; 27(4):331–355.

    CAS  PubMed  Google Scholar 

  10. Du H, Taylor HS. Molecular regulation of muUerian development by Hox genes. Ann N Y Acad Set. 2004; 1034:152–165.

    CAS  Google Scholar 

  11. Taylor HS. The role of HOX genes in the development and function of the female reproductive tract. Semin Reprod Med. 2000; 18(1):81–89.

    CAS  PubMed  Google Scholar 

  12. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system:late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997; 57(6):1338–1345.

    CAS  PubMed  Google Scholar 

  13. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998; 101(7):1379–1384.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor HS, Igarashi P, Olive DL, Arici A. Sex steroids mediate HOXAll expression in the human peri-implantation endometrium. J Clin Endocrinol Metab. 1999; 84(3):1129–1135.

    CAS  PubMed  Google Scholar 

  15. Petracco R, Grechukhina O, Popkhadze S, Massasa E, Zhou Y, Taylor HS. MicroRNA 135 regulates HOXAIO expression in endometriosis. J Clin Endocrinol Metab. 2011; 96(12):E1925–E1933.

    Google Scholar 

  16. Eun Kwon H, Taylor HS. The role of HOX genes in human implantation. Ann N Y Acad Sci. 2004; 1034:1–18.

    Google Scholar 

  17. Daftary GS, Taylor HS. Pleiotropic effects of HoxalO on the flmctional development of peri-implantation endometrium. Mol Reprod Dev. 2004; 67(1):8–14.

    CAS  PubMed  Google Scholar 

  18. Bagot CN, Troy PJ, Taylor HS. Alteration of maternal HoxalO expression by in vivo gene transfection affects implantation. Gene Ther. 2000; 7(16):1378–1384.

    CAS  PubMed  Google Scholar 

  19. Satokata I, Benson G, Maas R. Sexually dimorphic sterility pheno-types in HoxalO-deficient mice. Nature. 1995; 374(6521):460–463.

    CAS  PubMed  Google Scholar 

  20. Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL. Mechanisms of reduced fertility in Hoxa-10 mutant mice:uterine homeosis and loss of maternal Hoxa-10 expression. Development. 1996; 122(9):2687–2696.

    CAS  PubMed  Google Scholar 

  21. Taylor HS. The role of HOX genes in human implantation. Hum Reprod. 2000; 6(1):75–79.

    CAS  Google Scholar 

  22. Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999; 14(5):1328–1331.

    CAS  PubMed  Google Scholar 

  23. Daftary GS, Taylor HS. Hydrosalpinx fluid diminishes endometrial cell HOXAIO expression. Fertil Steril. 2002; 78(3):577–580.

    PubMed  Google Scholar 

  24. Zanatta A, Pereira RM, Rocha AM, et al. The relationship among HOXAIO, estrogen receptor a, progesterone receptor, and progesterone receptor B proteins in rectosigmoid endometriosis:a tissue microarray study. Reprod Sci. 2015; 22(1):31–37.

    PubMed  PubMed Central  Google Scholar 

  25. Daftary GS, Kayisli U, Sell E, Bukulmez O, Arici A, Taylor HS. Salpingectomy increases peri-implantation endometrial HOXAIO expression in women with hydrosalpinx. Fertil Steril. 2007; 87(2):367–372.

    CAS  PubMed  Google Scholar 

  26. Rackow BW, Jorgensen E, Taylor HS. Endometrial polyps affect uterine receptivity. Feriil Steril. 2011; 95(8):2690–2692.

    CAS  Google Scholar 

  27. Kim JJ, Taylor HS, Lu Z, et al. Altered expression of HOXAIO in endometriosis:potential role in decidualization. Mol Hum Reprod. 2007; 13(5):323–332.

    CAS  PubMed  Google Scholar 

  28. Bulun SE. Endometriosis. N Engl J Med. 2009; 360(3):268–279.

    CAS  PubMed  Google Scholar 

  29. Giudice LC, Kao LC. Endometriosis. Lancet. 2004; 364(9447):1789–1799.

    PubMed  Google Scholar 

  30. Rupp RA, Becker PB. Becker gene regulation by histone H1:new links to DNA methylation. Cell. 2005; 123(7):1178–1179.

    CAS  PubMed  Google Scholar 

  31. Hoffman AR, Hu JF. Directing DNA methylation to inhibit gene expression. Cell Mol Neurobiol. 2006; 26(4–6):425–438.

    CAS  PubMed  Google Scholar 

  32. Popiela A, Keith G, Borzecki A, et al. The meaning of the methylation of genomic DNA in the regulation of gene expression levels. Eur J Gynaecol Oncol. 2004; 25(2):145–149.

    CAS  PubMed  Google Scholar 

  33. Schtlbeler D. Function and information content of DNA methylation. Nature. 2015; 517(7534):321–326.

    Google Scholar 

  34. Paska AV, Hudler P. Aberrant methylation patterns in cancer:a clinical view. Biochem Med (Zagreb). 2015; 25(2):161–176.

    Google Scholar 

  35. Gyórffy B, Bottai G, Fleischer T, et al. Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes. Int J Cancer. 2016; 138(1):87–87.

    PubMed  Google Scholar 

  36. Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 2013; 13(7):497–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2009; 80(1):79–85.

    PubMed  PubMed Central  Google Scholar 

  38. Cakmak H, Taylor HS. Implantation failure:molecular mechanisms and clinical treatment. Hum Reprod Update. 2011; 17(2):242–253.

    CAS  PubMed  Google Scholar 

  39. Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J. 2010; 24(7):2273–2280.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bromer JG, Wu J, Zhou Y, Taylor HS. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure:an epigenetic mechanism for altered developmental programming. Endocrinology. 2009; 150(7):3376–3382.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cakmak H, Taylor HS. Molecular mechanisms of treatment resistance in endometriosis:the role of progesterone-hox gene interactions. Semin Reprod Med. 2010; 28(1):69–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith CC, Taylor HS. Xenoestrogen exposure imprints expression of genes (HoxalO) required for normal uterine development. FASEB J. 2007; 21(1):239–246.

    CAS  PubMed  Google Scholar 

  43. Barr AJ, Manning DR. Agonist promoted (35S)-GTPgS binding as a probe of receptor G-protein communication in reconstituted sf9 cells. In:Manning DR, ed. G Proteins Techniques of Analysis. Boca Raton, FL:CRC Press, Inc; 1999:227–245.

    Google Scholar 

  44. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)]. Methods. 2001; 25(4):402–408.

    CAS  PubMed  Google Scholar 

  45. Ren F, Wang DB, Li T, Chen YH, Li Y. Identification of differentially methylated genes in the malignant transformation of ovarian endometriosis. J Ovarian Res. 2014; 7:73.

    PubMed  PubMed Central  Google Scholar 

  46. Andersson KL, Bussani C, Fambrini M, et al. DNA methylation of HOXAIO in eutopic and ectopic endometrium. Hum Reprod. 2014; 29(9):1906–1911.

    CAS  PubMed  Google Scholar 

  47. Guida M, Sanguedolce F, Bufo P, et al. Aberrant DNA hyper-methylation of hMLH-1 and CDKN2A/p16 genes in benign, premalignant and malignant endometrial lesions. Eur J Gynaecol Oncol. 2009; 30(3):267–270.

    CAS  PubMed  Google Scholar 

  48. Keller S, Sarchiapone M, Zarrilli F, et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry. 2010; 67(3):258–267.

    CAS  PubMed  Google Scholar 

  49. Fischer CP, Kayisili U, Taylor HS. HOXAIO expression is decreased in endometrium of women with adenomyosis. Fertil Steril. 2010; 95(3):1133–1136.

    PubMed  PubMed Central  Google Scholar 

  50. Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo SW. Aberrant methylation at HOXAIO may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol. 2005; 193(2):371–380.

    CAS  PubMed  Google Scholar 

  51. Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2009; 80(1):79–85.

    PubMed  PubMed Central  Google Scholar 

  52. Szczepanska M, Wirstlein P, Luczak M, Jagodzinski PP, Skrzypc-zak J. Reduced expression of HOXAIO in the midluteal endometrium from infertile women with minimal endometriosis. Biomed Pharmacother. 2010; 64(10):697–705.

    CAS  PubMed  Google Scholar 

  53. Lu Y, Nie J, Liu X, Guo SW. Reduced expression and concomitant promoter hypermethylation of HOXAIO in endometrium from women wearing intrauterine devices. Fertil Steril. 2010; 95(4):1583–1588.

    Google Scholar 

  54. Lim U, Song MA. Dietary and lifestyle factors of DNA methylation. Methods Mol Biol. 2012; 863:359–376.

    CAS  PubMed  Google Scholar 

  55. Alegria-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics. 2011; 3(3):267–277.

    PubMed  Google Scholar 

  56. Williams KE, Anderton DL, Lee MP, Pentecost BT, Arcaro KF. High-density array analysis of DNA methylation in Tamoxifen-resistant breast cancer cell lines. Epigenetics. 2014; 9(2):297–307.

    CAS  PubMed  Google Scholar 

  57. Fan M, Yan PS, Hartman-Frey C, et al. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res. 2006; 66(24):11954–11966.

    CAS  PubMed  Google Scholar 

  58. Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2008; 80(1):79–85.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanaiah Mamillapalli PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulp, J.L., Mamillapalli, R. & Taylor, H.S. Aberrant HOXA10 Methylation in Patients With Common Gynecologic Disorders: Implications for Reproductive Outcomes. Reprod. Sci. 23, 455–463 (2016). https://doi.org/10.1177/1933719116630427

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116630427

Keywords

Navigation