Skip to main content

Advertisement

Log in

Integrative Analysis Reveals Regulatory Programs in Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis is a common gynecological disease found in approximately 10% of reproductive-age women. Gene expression analysis has been performed to explore alterations in gene expression associated with endometriosis; however, the underlying transcription factors (TFs) governing such expression changes have not been investigated in a systematic way. In this study, we propose a method to integrate gene expression with TF binding data and protein–protein interactions to construct an integrated regulatory network (IRN) for endometriosis. The IRN has shown that the most regulated gene in endometriosis is RUNX1, which is targeted by 14 of 26 TFs also involved in endometriosis. Using 2 published cohorts, GSE7305 (Hover, n = 20) and GSE7307 (Roth, n = 36) from the Gene Expression Omnibus database, we identified a network of TFs, which bind to target genes that are differentially expressed in endometriosis. Enrichment analysis based on the hypergeometric distribution allowed us to predict the TFs involved in endometriosis (n = 40). This included known TFs such as androgen receptor (AR) and critical factors in the pathology of endometriosis, estrogen receptor α, and estrogen receptor β. We also identified several new ones from which we selected FOXA2 and TFAP2C, and their regulation was confirmed by quantitative real-time polymerase chain reaction and immunohistochemistry (IHC). Further, our analysis revealed that the function of AR and p53 in endometriosis is regulated by posttranscriptional changes and not by differential gene expression. Our integrative analysis provides new insights into the regulatory programs involved in endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–2398.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rogers PA, D’Hooghe TM, Fazleabas A, et al. Defining future directions for endometriosis research: workshop report from the 2011 World Congress of Endometriosis in Montpellier, France. Reprod Sci. 2013;20(5):483–499.

    PubMed  PubMed Central  Google Scholar 

  3. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    CAS  PubMed  Google Scholar 

  4. Vinatier D, Orazi G, Cosson M, Dufour P. Theories of endometriosis. Eur J Obstet Gynecol Reprod Biol. 2001;96(1):21–34.

    CAS  PubMed  Google Scholar 

  5. Fauser BC, Diedrich K, Bouchard P, et al. Contemporary genetic technologies and female reproduction. Evian Annual Reproduction. Hum Reprod Update. 2011;17(6):829–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Signorile PG, Baldi F, Bussani R, D’Armiento M, De Falco M, Baldi A. Ectopic endometrium in human foetuses is a common event and sustains the theory of mullerianosis in the pathogenesis of endometriosis, a disease that predisposes to cancer. J Exp Clin Canc Res. 2009;28:49.

    Google Scholar 

  7. Matsuura K, Ohtake H, Katabuchi H, Okamura H. Coelomic metaplasia theory of endometriosis: evidence from in vivo studies and an in vitro experimental model. Gynecol Obstet Invest. 1999;47(suppl 1):18–20; discussion 20-12.

    PubMed  Google Scholar 

  8. Laschke MW, Giebels C, Menger MD. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update. 2011;17(5):628–636.

    CAS  PubMed  Google Scholar 

  9. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292(1):81–85.

    CAS  PubMed  Google Scholar 

  10. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem cells. 2007;25(8):2082–2086.

    CAS  PubMed  Google Scholar 

  11. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endo-metriosis. Ann N Y Acad Sci. 2008;1127:106–115.

    PubMed  PubMed Central  Google Scholar 

  12. Figueira PG, Abrao MS, Krikun G, Taylor HS. Stem cells in endo-metrium and their role in the pathogenesis of endometriosis. Ann N Y Acad Sci. 2011;1221:10–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rogers PA, D’Hooghe TM, Fazleabas A, et al. Priorities for endo-metriosis research: recommendations from an international consensus workshop. Reprod Sci. 2009;16(4):335–346.

    PubMed  Google Scholar 

  14. Shinohara A, Kutsukake M, Takahashi M, Kyo S, Tachikawa E, Tamura K. Protease-activated receptor-stimulated interleukin-6 expression in endometriosis-like lesions in an experimental mouse model of endometriosis. J Pharmacol Sci. 2012;119(1):40–51.

    CAS  PubMed  Google Scholar 

  15. Khoufache K, Bazin S, Girard K, et al. Macrophage migration inhibitory factor antagonist blocks the development of endome-triosis in vivo. PloS One. 2012;7(5):e37264.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hever A, Roth RB, Hevezi P, et al. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci U S A. 2007;104(30):12451–12456.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Celik O, Celik E, Turkcuoglu I, et al. Surgical removal of endo-metrioma decreases the NF-kB1 (p50/105) and NF-kB p65 (Rel A) expression in the eutopic endometrium during the implantation window. Reprod Sci. 2013;20(7):762–770.

    PubMed  Google Scholar 

  18. Meola J, Dentillo DB, Rosa e Silva JC, Hidalgo Gdos S, Paz CC, Ferriani RA. RHOC: a key gene for endometriosis. Reprod Sci. 2013;20(8):998–1002.

    CAS  PubMed  Google Scholar 

  19. Governini L, Carrarelli P, Rocha AL, et al. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci. 2014;21(10):1249–1255.

    CAS  PubMed  Google Scholar 

  20. Chang JH, Au HK, Lee WC, et al. Expression of the pluripotent transcription factor OCT4 promotes cell migration in endometriosis. Fertil Steril. 2013;99(5):1332–1339. e5.

    CAS  PubMed  Google Scholar 

  21. Xiao W, Awadallah A, Xin W. Loss of ARID1A/BAF250a expression in ovarian endometriosis and clear cell carcinoma. Int J Clin Exp Pathol. 2012;5(7):642–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao H, Wang Q, Bai C, He K, Pan Y. A cross-study gene set enrichment analysis identifies critical pathways in endometriosis. Reprod Biol Endocrinol. 2009;7:94.

    PubMed  PubMed Central  Google Scholar 

  23. Gonzalez-Ramos R, Defrere S, Devoto L. Nuclear factor-kappaB: a main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil Steril. 2012;98(3):520–528.

    CAS  PubMed  Google Scholar 

  24. Yang H, Zhou Y, Edelshain B, Schatz F, Lockwood CJ, Taylor HS. FKBP4 is regulated by HOXA10 during decidualization and in endometriosis. Reproduction. 2012;143(4):531–538.

    CAS  PubMed  Google Scholar 

  25. Fischer CP, Kayisili U, Taylor HS. HOXA10 expression is decreased in endometrium of women with adenomyosis. Fertil Steril. 2011;95(3):1133–1136.

    CAS  PubMed  Google Scholar 

  26. Penna I, Du H, Ferriani R, Taylor HS. Calpain5 expression is decreased in endometriosis and regulated by HOXA10 in human endometrial cells. Mol Hum Reprod. 2008;14(10):613–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JJ, Taylor HS, Lu Z, et al. Altered expression of HOXA10 in endometriosis: potential role in decidualization. Mol Hum Reprod. 2007;13(5):323–332.

    CAS  PubMed  Google Scholar 

  28. Browne H, Taylor H. HOXA10 expression in ectopic endometrial tissue. Fertil Steril. 2006;85(5):1386–1390.

    CAS  PubMed  Google Scholar 

  29. Lu H, Yang X, Zhang Y, Lu R, Wang X. Epigenetic disorder may cause downregulation of HOXA10 in the eutopic endometrium of fertile women with endometriosis. Reprod Sci. 2013;20(1):78–84.

    PubMed  Google Scholar 

  30. Bussemaker HJ, Li H, Siggia ED. Regulatory element detection using correlation with expression. Nat Genet. 2001;27(2):167–171.

    CAS  PubMed  Google Scholar 

  31. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP. Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci U S A. 2003;100(26):15522–15527.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Alter O, Golub GH. Integrative analysis of genome-scale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription. Proc Natl Acad Sci U S A. 2004;101(47):16577–16582.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsai HK, Lu HH, Li WH. Statistical methods for identifying yeast cell cycle transcription factors. Proc Natl Acad Sci U S A. 20 2005;102(38):13532–13537.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng C, Yan X, Sun F, Li LM. Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinformatics. 2007;8:452.

    PubMed  PubMed Central  Google Scholar 

  35. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Barrette TR, Ghosh D, Chinnaiyan AM. Mining for regulatory programs in the cancer transcriptome. Nat Genet. 2005;37(6):579–583.

    CAS  PubMed  Google Scholar 

  36. Cheng C, Li LM, Alves P, Gerstein M. Systematic identification of transcription factors associated with patient survival in cancers. BMC Genomics. 2009;10:225.

    PubMed  PubMed Central  Google Scholar 

  37. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316(5830):1497–1502.

    CAS  PubMed  Google Scholar 

  38. Aparicio O, Geisberg JV, Struhl K. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Cell Biol. 2004;17: Unit 17. 17.

    Google Scholar 

  39. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(database issue):D991–D995.

    CAS  PubMed  Google Scholar 

  40. Hull ML, Escareno CR, Godsland JM, et al. Endometrial-peritoneal interactions during endometriotic lesion establishment. Am J Pathol. 2008;173(3):700–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics. 2010;26(19):2438–2444.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brown KR, Jurisica I. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 2007;8(5):R95.

    PubMed  PubMed Central  Google Scholar 

  43. Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 2010;140(5):744–752.

    CAS  PubMed  Google Scholar 

  44. Gerstein MB, Lu ZJ, Van Nostrand EL, et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science. 2010;330(6012):1775–1787.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    PubMed  Google Scholar 

  46. Applied Biosystems. ABI Prism 7700, User Bulletin. Foster City, CA: 1997.

  47. Barr A, Manning D. G Proteins Techniques of Analysis, Manning DR, ed. Boca Raton, FL: CRC Press, Inc.; 1999:227–245.

    Google Scholar 

  48. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 2010;38(Database issue):D204–D210.

    CAS  PubMed  Google Scholar 

  49. Ichikawa M, Asai T, Chiba S, Kurokawa M, Ogawa S. Runx1/ AML-1 ranks as a master regulator of adult hematopoiesis. Cell Cycle. 2004;3(6):722–724.

    CAS  PubMed  Google Scholar 

  50. Konno R, Fujiwara H, Netsu S, et al. Gene expression profiling of the rat endometriosis model. Am J Reprod Immunol. 2007;58(4):330–343.

    CAS  PubMed  Google Scholar 

  51. Wang P, Zhu L, Zhang X. The role of placental protein 14 in the pathogenesis of endometriosis. Reprod Sci. 2013;20(12):1465–1470.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Paech K, Webb P, Kuiper GG, et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science. 1997;277(5331):1508–1510.

    CAS  PubMed  Google Scholar 

  53. Li X, Huang J, Yi P, Bambara RA, Hilf R, Muyan M. Single-chain estrogen receptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways. Mol Cell Biol. 2004;24(17):7681–7694.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Weihua Z, Saji S, Makinen S, et al. Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proc Natl Acad Sci U S A. 2000;97(11):5936–5941.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cloke B, Christian M. The role of androgens and the androgen receptor in cycling endometrium. Mol Cell Endocrinol. 2012;358(2):166–175.

    CAS  PubMed  Google Scholar 

  56. Cloke B, Huhtinen K, Fusi L, et al. The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology. 2008;149(9):4462–4474.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Apparao KB, Lovely LP, Gui Y, Lininger RA, Lessey BA. Elevated endometrial androgen receptor expression in women with polycystic ovarian syndrome. Biol Reprod. 2002;66(2):297–304.

    CAS  PubMed  Google Scholar 

  58. Shaik NA, Govindan S, Kodati V, Rao KP, Hasan Q. Polymorphic (CAG)n repeats in the androgen receptor gene: a risk marker for endometriosis and uterine leiomyomas. Hematol Oncol Stem Cell Ther. 2009;2(1):289–293.

    CAS  PubMed  Google Scholar 

  59. Lattuada D, Vigano P, Somigliana E, Odorizzi MP, Vignali M, Di Blasio AM. Androgen receptor gene cytosine, adenine, and gua-nine trinucleotide repeats in patients with endometriosis. J Soc Gynecol Investig. 2004;11(4):237–240.

    CAS  PubMed  Google Scholar 

  60. Hsieh YY, Chang CC, Tsai FJ, Wu JY, Tsai CH, Tsai HD. Androgen receptor trinucleotide polymorphism in endometriosis. Fertil Steril. 2001;76(2):412–413.

    CAS  PubMed  Google Scholar 

  61. Fujimoto J, Hirose R, Sakaguchi H, Tamaya T. Expression of size-polymorphic androgen receptor (AR) gene in ovarian endo-metriosis according to the number of cytosine, adenine, and guanine (CAG) repeats in AR alleles. Steroids. 1999;64(8):526–529.

    CAS  PubMed  Google Scholar 

  62. Carneiro MM, Morsch DM, Camargos AF, Reis FM, Spritzer PM. Androgen receptor and 5alpha-reductase are expressed in pelvic endometriosis. BJOG. 2008;115(1):113–117.

    CAS  PubMed  Google Scholar 

  63. Marshall E, Lowrey J, MacPherson S, et al. In silico analysis identifies a novel role for androgens in the regulation of human endo-metrial apoptosis. J Clin Endocrinol Metab. 2011;96(11):E1746–E1755.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ammendola M, Gloria-Bottini F, Sesti F, Piccione E, Bottini E. Association of p53 codon 72 polymorphism with endometriosis. Fertil Steril. 2008;90(2):406–408.

    CAS  PubMed  Google Scholar 

  65. Govatati S, Chakravarty B, Deenadayal M, et al. p53 and risk of endometriosis in Indian women. Genet Test Mol Biomarkers. 2012;16(8):865–873.

    CAS  PubMed  Google Scholar 

  66. Jia S, Xu L, Chan Y, et al. p53 codon 72 polymorphism and endo-metriosis: a meta-analysis. Arch Gynecol Obstet. 2012;285(6):1657–1661.

    CAS  PubMed  Google Scholar 

  67. Ribeiro Junior CL, Arruda JT, Silva CT, Moura KK. Analysis of p53 codon 72 gene polymorphism in Brazilian patients with endo-metriosis. Genet Mol Res. 2009;8(2):494–499.

    CAS  PubMed  Google Scholar 

  68. Ying TH, Tseng CJ, Tsai SJ, et al. Association of p53 and CDKN1A genotypes with endometriosis. Anticancer Res. 2011;31(12):4301–4306.

    CAS  PubMed  Google Scholar 

  69. Gylfason JT, Dang D, Petursdottir V, et al. Quantitative DNA perturbations of p53 in endometriosis: analysis of American and Icelandic cases. Fertil Steril. 2005;84(5):1388–1394.

    CAS  PubMed  Google Scholar 

  70. Bayramoglu H, Duzcan E. Atypical epithelial changes and mutant p53 gene expression in ovarian endometriosis. Pathol Oncol Res. 2001;7(1):33–38.

    CAS  PubMed  Google Scholar 

  71. Bunch K, Tinnemore D, Huff S, Hoffer ZS, Burney RO, Stallings JD. Expression patterns of progesterone receptor membrane components 1 and 2 in endometria from women with and without endometriosis. Reprod Sci. 2014;21(2):190–197.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanaiah Mamillapalli PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Kang, K., Cheng, C. et al. Integrative Analysis Reveals Regulatory Programs in Endometriosis. Reprod. Sci. 22, 1060–1072 (2015). https://doi.org/10.1177/1933719115592709

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115592709

Keywords

Navigation