Skip to main content
Log in

Proteomic Biomarkers for Spontaneous

Preterm Birth: A Systematic Review of the Literature

  • In the Spotlight
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published between January 1994 and December 2012. Retrieved citations were screened, and relevant studies were selected for full-text reading, in triplicate. The search yielded 529 citations, 51 were selected for full-text reading and 8 studies were included in the review. A total of 64 dysregulated proteins were reported. Only 14-3-3 protein sigma, annexin A5, protein S100-A8, protein S100-A12, and inter-α-trypsin inhibitor heavy chain H4 were reported in more than 1 study, but results could not be combined due to heterogeneity in type of sample and analytical platform. In conclusion, according to the existing literature, there are no specific proteomic biomarkers capable of accurately predicting PTB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simmons LE, Rubens CE, Darmstadt GL, Gravett MG. Preventing preterm birth and neonatal mortality: exploring the epidemiology, causes, and interventions. Semin Perinatol. 2010;34(6): 408–415.

    Article  Google Scholar 

  2. Bastek JA, Elovitz MA. The role and challenges of biomarkers in spontaneous preterm birth and preeclampsia. Fertil Steril. 2013;99(4): 1117–1123.

    Article  CAS  Google Scholar 

  3. Menon R, Torloni MR, Voltolini C, et al. Biomarkers of spontaneous preterm birth: an overview of the literature in the last four decades. Reprod Sci. 2011;18(11): 1046–1070.

    Article  Google Scholar 

  4. Silbergeld EK, Davis DL. Role of biomarkers in identifying and understanding environmentally induced disease. Clin Chem. 1994;40(7 pt 2): 1363–1367.

    Article  CAS  Google Scholar 

  5. Kersten B, Wanker EE, Hoheisel JD, Angenendt P. Multiplex approaches in protein microarray technology. Expert Rev Proteomics. 2005;2(4): 499–510.

    Article  CAS  Google Scholar 

  6. Dasilva N, Diez P, Matarraz S, et al. Biomarker discovery by novel sensors based on nanoproteomics approaches. Sensors (Basel). 2012;12(2): 2284–2308.

    Article  CAS  Google Scholar 

  7. Bea JW, Wright NC, Thompson P, Hu C, Guerra S, Chen Z. Performance evaluation of a multiplex assay for future use in biomarker discovery efforts to predict body composition. Clin Chem Lab Med. 2011;49(5): 817–824.

    Article  CAS  Google Scholar 

  8. Wasinger VC, Cordwell SJ, Cerpa- Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995;16(7): 1090–1094.

    Article  CAS  Google Scholar 

  9. Tambor V, Fucikova A, Lenco J, et al. Application of proteomics in biomarker discovery: a primer for the clinician. Physiol Res. 2010;59(4): 471–497.

    Article  CAS  Google Scholar 

  10. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19(11): 1853–1861.

    Article  CAS  Google Scholar 

  11. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol. 2005;1(5): 252–262.

    Article  CAS  Google Scholar 

  12. Buhimschi CS, Bhandari V, Hamar BD, et al. Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med. 2007;4(1): e18.

    Article  Google Scholar 

  13. Buhimschi CS, Dulay AT, Abdel- Razeq S, et al. Fetal inflammatory response in women with proteomic biomarkers characteristic of intra-amniotic inflammation and preterm birth. BJOG. 2009;116(2): 257–267.

    Article  CAS  Google Scholar 

  14. Buhimschi IA, Christner R, Buhimschi CS. Proteomic biomarker analysis of amniotic fluid for identification of intra-amniotic inflammation. BJOG. 2005;112(2): 173–181.

    Article  CAS  Google Scholar 

  15. Bujold E, Romero R, Kusanovic JP, et al. Proteomic profiling of amniotic fluid in preterm labor using two-dimensional liquid separation and mass spectrometry. J Matern Fetal Neonatal Med. 2008;21(10): 697–713.

    Article  CAS  Google Scholar 

  16. Romero R, Kusanovic JP, Gotsch F, et al. Isobaric labeling and tandem mass spectrometry: a novel approach for profiling and quantifying proteins differentially expressed in amniotic fluid in preterm labor with and without intra-amniotic infection/inflammation. J Matern Fetal Neonatal Med. 2010;23(4): 261–280.

    Article  CAS  Google Scholar 

  17. Romero R, Espinoza J, Gotsch F, et al. The use of high-dimensional biology (genomics, transcriptomics, proteomics, and metabolomics) to understand the preterm parturition syndrome. BJOG. 2006;113(suppl 3): 118–135.

    Article  CAS  Google Scholar 

  18. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8): 529–536.

    Article  Google Scholar 

  19. Pereira L, Reddy AP, Jacob T, et al. Identification of novel protein biomarkers of preterm birth in human cervical-vaginal fluid. J Proteome Res. 2007;6(4): 1269–1276.

    Article  CAS  Google Scholar 

  20. Butt RH, Lee MW, Pirshahid SA, Backlund PS, Wood S, Coorssen JR. An initial proteomic analysis of human preterm labor: placental membranes. J Proteome Res. 2006;5(11): 3161–3172.

    Article  Google Scholar 

  21. Stella CL, Bennett MR, Devarajan P, et al. Preterm labor biomarker discovery in serum using 3 proteomic profiling methodologies. Am J Obstet Gynecol. 2009;201(4):387 e1–387 e13.

    Article  Google Scholar 

  22. Shankar R, Johnson MP, Williamson NA, et al. Molecular markers of preterm labor in the choriodecidua. Reprod Sci. 2010;17(3): 297–310.

    Article  CAS  Google Scholar 

  23. Cobo T, Palacio M, Navarro- Sastre A, et al. Predictive value of combined amniotic fluid proteomic biomarkers and interleukin-6 in preterm labor with intact membranes. Am J Obstet Gynecol. 2009;200(5):499 e1–499 e6.

    Article  Google Scholar 

  24. Shah SJ, Yu KH, Sangar V, Parry SI, Blair IA. Identification and quantification of preterm birth biomarkers in human cervicovaginal fluid by liquid chromatography/tandem mass spectrometry. J Proteome Res. 2009;8(5): 2407–2417.

    Article  CAS  Google Scholar 

  25. Esplin MS, Merrell K, Goldenberg R, et al. Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth. Am J Obstet Gynecol. 2011;204(5):391 e1–391 e8.

    Article  Google Scholar 

  26. Taylor BD, Holzman CB, Fichorova RN, et al. Inflammation biomarkers in vaginal fluid and preterm delivery. Hum Reprod. 2013;28(4): 942–952.

    Article  CAS  Google Scholar 

  27. Galazis N, Docheva N, Nicolaides KH, Atiomo W. Proteomic biomarkers of preterm birth risk in women with polycystic ovary syndrome (PCOS): a systematic review and biomarker database integration. PLoS One. 2013;8(1): e53801.

    Article  CAS  Google Scholar 

  28. Gravett MG, Novy MJ, Rosenfeld RG, et al. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA. 2004;292(4): 462–469.

    Article  CAS  Google Scholar 

  29. Han X, Aslanian A, Yates JR 3rd. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12(5): 483–490.

    Article  CAS  Google Scholar 

  30. Rabilloud T, Lelong C. Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics. 2011;74(10): 1829–1841.

    Article  CAS  Google Scholar 

  31. Thiede B, Koehler CJ, Strozynski M, et al. High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture(SILAC), two-dimensional gel electrophoresis(2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer. Mol Cell Proteomics. 2013;12(2): 529–538.

    Article  CAS  Google Scholar 

  32. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76(9): 4350–4354.

    Article  CAS  Google Scholar 

  33. Linke T, Ross AC, Harrison EH. Proteomic analysis of rat plasma by two-dimensional liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr A. 2006;1123(2): 160–169.

    Article  CAS  Google Scholar 

  34. Michalski A, Damoc E, Hauschild JP, et al. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics. 2011;10(9): M111.011015.

    Article  Google Scholar 

  35. Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4): 939–965.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ramkumar Menon PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kacerovsky, M., Lenco, J., Musilova, I. et al. Proteomic Biomarkers for Spontaneous. Reprod. Sci. 21, 283–295 (2014). https://doi.org/10.1177/1933719113503415

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113503415

Keywords

Navigation