Skip to main content

Advertisement

Log in

DNA Methylation is Altered in Maternal Blood Vessels of Women With Preeclampsia

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We analyzed 27 578 CpG sites that map to 14 495 genes in omental arteries of normal pregnant and preeclamptic women for DNA methylation status using the Illumina platform. We found 1685 genes with a significant difference in DNA methylation at a false discovery rate of <10% with many inflammatory genes having reduced methylation. Unsupervised hierarchical clustering revealed natural clustering by diagnosis and methylation status. Of the genes with significant methylation differences, 236 were significant at a false discovery rate of <5%. When data were analyzed more stringently to a false discovery rate of <5% and difference in methylation of >0.10, 65 genes were identified, all of which showed reduced methylation in preeclampsia. When these genes were mapped to gene ontology for molecular functions and biological processes, 75 molecular functions and 149 biological processes were overrepresented in the preeclamptic vessels. These included smooth muscle contraction, thrombosis, inflammation, redox homeostasis, sugar metabolism, and amino acid metabolism. We speculate that reduced methylation may contribute to the pathogenesis of preeclampsia and that alterations in DNA methylation resulting from preeclampsia may increase maternal risk of cardiovascular disease later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cunningham FG, Leveno KJ, Bloom SL, Gilstrap III LC, Hauth JC, Wenstrom KD. Williams Obstetrics, 22nd ed. New York, NY: McGraw-Hill; 2005.

    Google Scholar 

  2. Roberts JM, Gammill HS. Preeclampsia: recent insights. Hypertension. 2005;46(6):1243–1249.

    Article  CAS  PubMed  Google Scholar 

  3. Pridjian G, Puschett JB. Preeclampsia. Part 2: experimental and genetic considerations. Obstet Gynecol Surv. 2002;57(9):619–640.

    Article  PubMed  Google Scholar 

  4. Williams PJ, Pipkin FB. The genetics of pre-eclampsia and other hypertensive disorders of pregnancy. Best practice & research. Clin obstet Gynaecol. 2011;25(4):405–417.

    Article  Google Scholar 

  5. Wilson CB, Makar KW, Shnyreva M, Fitzpatrick DR. DNA methylation and the expanding epigenetics of T cell lineage commitment. Semin Immunol. 2005;17(2):105–119.

    Article  CAS  PubMed  Google Scholar 

  6. Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23(8):413–418.

    Article  CAS  PubMed  Google Scholar 

  7. Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol. 2010;44(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  8. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  9. Zaina S, Lindholm MW, Lund G. Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr. 2005;135(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  10. Paulsen M, Ferguson-Smith AC. DNA methylation in genomic imprinting, development, and disease. J Pathol. 2001;195(1):97–110.

    Article  CAS  PubMed  Google Scholar 

  11. Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol. 2007;20(7):711–721.

    Article  CAS  PubMed  Google Scholar 

  12. Connor CM, Akbarian S. DNA methylation changes in schizophrenia and bipolar disorder. Epigenetics. 2008;3:55–58.

    Article  PubMed  Google Scholar 

  13. van der Linden IJ, Heil SG, van Egmont Petersen M, van Straaten HW, den Heijer M, Blom HJ. Inhibition of methylation and changes in gene expression in relation to neural tube defects. Birth Defects Res A Clin Mol Teratol. 2008;82(10):676–683.

    Article  PubMed  CAS  Google Scholar 

  14. Dong C, Yoon W, Goldschmidt-Clermont PJ. DNA methylation and atherosclerosis. J Nutr. 2002;132:2406S-2409 S.

    Article  CAS  PubMed  Google Scholar 

  15. Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P, Schwartz J. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology. 2010;21(6):819–828.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 1999;222(3):222–235.

    Article  CAS  PubMed  Google Scholar 

  17. Walsh SW. Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia. Semin Reprod Endocrinol. 1998; 16(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  18. Walsh SW. Obesity: a risk factor for preeclampsia. Trends in endocrinology and metabolism: TEM. 2007;18(10):365–370.

    Article  CAS  PubMed  Google Scholar 

  19. Wang JX, Knottnerus AM, Schuit G, Norman RJ, Chan A, Dekker GA. Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet. 2002;359(9307):673–674.

    Article  PubMed  Google Scholar 

  20. Yu L, Chen M, Zhao D, et al. The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta. 2009;30(5):443–447.

    Article  CAS  PubMed  Google Scholar 

  21. Chelbi ST, Vaiman D. Genetic and epigenetic factors contribute to the onset of preeclampsia. Mol Cell Endocrinol. 2008;282(1–2): 120–129.

    Article  CAS  PubMed  Google Scholar 

  22. Chelbi ST, Mondon F, Jammes H, et al. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension. 2007;49(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  23. Kanayama N, Takahashi K, Matsuura T, et al. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod. 2002;8(12):1129–1135.

    Article  CAS  PubMed  Google Scholar 

  24. Yuen RK, Penaherrera MS, von Dadelszen P, McFadden DE, Robinson WP. DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in earlyonset preeclampsia. Eur J Hum Genet. 2010;18(9):1006–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. DNA methylation: bisulphite modification and analysis. Nat Protoc. 2006;1:2353–2364.

    Article  CAS  PubMed  Google Scholar 

  26. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29(13):E65–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25(12):2532–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang H, Ogawa M, Wood JR, et al. Genetic and epigenetic mechanisms combine to control MMP1 expression and its association with preterm premature rupture of membranes. Hum Mol Genet. 2008;17(8):1087–1096.

    Article  CAS  PubMed  Google Scholar 

  29. Bibikova M, Lin Z, Zhou L, et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 2006; 16(3):383–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weisenberger DJ, Berg DVD., Pan F, Berman BP, Laird PW. Comprehensive DNA Methylation Analysis on the Illumina Infinium Assay Platform. San Diego, CA: Illumina and Inc; 2008.

    Google Scholar 

  32. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–719.

    Article  CAS  PubMed  Google Scholar 

  33. Archer KJ, Mas VR, Maluf DG, Fisher RA. High-throughput assessment of CpG site methylation for distinguishing between HCV-cirrhosis and HCV-associated hepatocellular carcinoma. Mol Genet Genomics. 2010;283(4):341–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanabe T, Ullrich V. Prostacyclin and thromboxane synthases. J Lipid Mediat Cell Signal. 1995;12:243–255.

    Article  CAS  PubMed  Google Scholar 

  35. Walsh SW. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am J Obstet Gynecol. 1985;152(3): 335–340.

    Article  CAS  PubMed  Google Scholar 

  36. Chavarria ME, Lara-Gonzalez L, Gonzalez-Gleason A, Garcia-Paleta Y, Vital-Reyes VS, Reyes A. Prostacyclin/thromboxane early changes in pregnancies that are complicated by preeclampsia. Am J Obstet Gynecol. 2003;188(4):986–992.

    Article  CAS  PubMed  Google Scholar 

  37. Mills JL, DerSimonian R, Raymond E, et al. Prostacyclin and thromboxane changes predating clinical onset of preeclampsia: a multicenter prospective study. JAMA. 1999;282(4):356–362.

    Article  CAS  PubMed  Google Scholar 

  38. Walsh SW. Eicosanoids in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2004;70:223–232.

    Article  CAS  PubMed  Google Scholar 

  39. Mousa AA, Strauss III JF, Walsh SW. Reduced methylation of thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia. Hypertension. 2012;59(6): 1249–1255.

    Article  CAS  PubMed  Google Scholar 

  40. Estrada-Gutierrez G, Cappello RE, Mishra N, Romero R, Strauss JF 3rd Walsh SW. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction. Am J Pathol. 2011;178(1):451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cappello R, Estrada-Gutierrez G, Gerk PM, Strauss III JF, Walsh SW. Epigenetic control of collagen regulating genes in vascular smooth muscle. Reprod Sci. 2008;15(supplement):73A.

    Google Scholar 

  42. Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180(2 pt 1):499–506.

    Article  CAS  PubMed  Google Scholar 

  43. Gatti L, Tenconi PM, Guarneri D, et al. Hemostatic parameters and platelet activation by flow-cytometry in normal pregnancy: a longitudinal study. Int J Clin Lab Res. 1994;24(4): 217–219.

    Article  CAS  PubMed  Google Scholar 

  44. Halligan A, Bonnar J, Sheppard B, Darling M, Walshe J. Haemostatic, fibrinolytic and endothelial variables in normal pregnancies and pre-eclampsia. Br J Obstet Gynaecol. 1994; 101(6):488–492.

    Article  CAS  PubMed  Google Scholar 

  45. Haram K, Augensen K, Elsayed S. Serum protein pattern in normal pregnancy with special reference to acute-phase reactants. Br J Obstet Gynaecol. 1983;90(2):139–145.

    Article  CAS  PubMed  Google Scholar 

  46. Austgulen R, Lien E, Liabakk NB, Jacobsen G, Arntzen KJ. Increased levels of cytokines and cytokine activity modifiers in normal pregnancy. Eur J Obstet Gynecol Reprod Biol. 1994; 57(3):149–155.

    Article  CAS  PubMed  Google Scholar 

  47. Melczer Z, Banhidy F, Csomor S, et al. Influence of leptin and the TNF system on insulin resistance in pregnancy and their effect on anthropometric parameters of newborns. Acta Obstet Gynecol Scand. 2003;82(5):432–438.

    Article  PubMed  Google Scholar 

  48. Arntzen KJ, Liabakk NB, Jacobsen G, Espevik T, Austgulen R. Soluble tumor necrosis factor receptor in serum and urine throughout normal pregnancy and at delivery. Am J Reprod Immunol. 1995;34(3):163–169.

    Article  CAS  PubMed  Google Scholar 

  49. Lurie S, Rahamim E, Piper I, Golan A, Sadan O. Total and differential leukocyte counts percentiles in normal pregnancy. Eur J Obstet Gynecol Reprod Biol. 2008;136(1):16–19.

    Article  PubMed  Google Scholar 

  50. Barriga C, Rodriguez AB, Ortega E. Increased phagocytic activity of polymorphonuclear leukocytes during pregnancy. Eur J Obstet Gynecol Reprod Biol. 1994;57(1):43–46.

    Article  CAS  PubMed  Google Scholar 

  51. Smarason AK, Gunnarsson A, Alfredsson JH, Valdimarsson H. Monocytosis and monocytic infiltration of decidua in early pregnancy. J Clin Lab Immunol. 1986;21(1):1–5.

    CAS  PubMed  Google Scholar 

  52. Sacks GP, Studena K, Sargent K, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol. 1998;179(1):80–86.

    Article  CAS  PubMed  Google Scholar 

  53. Barden A. Circulating markers of oxidative stress are raised in normal pregnancy and pre-eclampsia. Br J Obstet Gynaecol. 1999;106(11):1232.

    Article  CAS  PubMed  Google Scholar 

  54. Martin U, Davies C, Hayavi S, Hartland A, Dunne F. Is normal pregnancy atherogenic? Clin Sci (Lond). 1999;96(4): 421–425.

    Article  CAS  Google Scholar 

  55. Borzychowski AM, Sargent IL, Redman CW. Inflammation and pre-eclampsia. Semin Fetal Neonatal Med. 2006;11(5):309–316.

    Article  CAS  PubMed  Google Scholar 

  56. Plutzky J. The PPAR-RXR transcriptional complex in the vasculature: energy in the balance. Circ Res. 2011;108(8):1002–1016.

    Article  CAS  PubMed  Google Scholar 

  57. Shah TJ, Walsh SW. Activation of NF-kappaB and expression of COX-2 in association with neutrophil infiltration in systemic vascular tissue of women with preeclampsia. Am J Obstet Gynecol. 2007;196(1):48 e1–8.

    Article  CAS  Google Scholar 

  58. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5(4):331–342.

    Article  CAS  PubMed  Google Scholar 

  59. Yu M, Wang H, Ding A, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26(2):174–179.

    Article  CAS  PubMed  Google Scholar 

  60. Inoue K, Kawahara K, Biswas KK, et al. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol. 2007;16(3): 136–143.

    Article  CAS  PubMed  Google Scholar 

  61. Mihu D, Costin N, Mihu CM, Blaga LD, Pop RB. C-reactive protein, marker for evaluation of systemic inflammatory response in preeclampsia. Rev Med Chir Soc Med Nat Iasi. 2008;112(4): 1019–1025.

    CAS  PubMed  Google Scholar 

  62. Qiu C, Luthy DA, Zhang C, Walsh SW, Leisenring WM, Williams MA. A prospective study of maternal serum C-reactive protein concentrations and risk of preeclampsia. Am J Hypertens. 2004;17(2):154–160.

    Article  CAS  PubMed  Google Scholar 

  63. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, Suffredini AF. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101(7):2652–2660.

    Article  CAS  PubMed  Google Scholar 

  64. Leik CE, Walsh SW. Neutrophils infiltrate resistance-sized vessels of subcutaneous fat in women with preeclampsia. Hypertension. 2004;44:72–77.

    Article  CAS  PubMed  Google Scholar 

  65. Narumiya H, Zhang Y, Fernandez-Patron C, Guilbert LJ, Davidge ST. Matrix metalloproteinase-2 is elevated in the plasma of women with preeclampsia. Hypertens Pregnancy. 2001;20(2): 185–194.

    Article  CAS  PubMed  Google Scholar 

  66. Poon LC, Nekrasova E, Anastassopoulos P, Livanos P, Nicolaides KH. First-trimester maternal serum matrix metalloproteinase-9 (MMP-9) and adverse pregnancy outcome. Prenat Diagn. 2009; 29(6):553–559.

    Article  CAS  PubMed  Google Scholar 

  67. Khalil RA, Granger JP. Vascular mechanisms of increased arterial pressure in preeclampsia: lessons from animal models. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R29–45.

    Article  CAS  PubMed  Google Scholar 

  68. Lunell NO, Nylund LE, Lewander R, Sarby B. Uteroplacental blood flow in pre-eclampsia measurements with indium-113m and a computer-linked gamma camera. Clin Exp Hypertens B. 1982;1(1):105–117.

    CAS  PubMed  Google Scholar 

  69. Perry KG. Jr., Martin JN, Jr. Abnormal hemostasis and coagulopathy in preeclampsia and eclampsia. Clin Obstet Gynecol. 1992;35(2):338–350.

    Article  PubMed  Google Scholar 

  70. von Versen-Hoeynck FM, Powers RW. Maternal-fetal metabolism in normal pregnancy and preeclampsia. Front Biosci. 2007;12: 2457–2470.

    Article  Google Scholar 

  71. Hill LD, York TP, Kusanovic JP, et al. Epistasis between COMT and MTHFR in maternal-fetal dyads increases risk for preeclampsia. PloS one. 2011;6(1):e16681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hitchler MJ, Domann FE. An epigenetic perspective on the free radical theory of development. Free Radic Biol Med. 2007; 43(7):1023–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weitzman SA, Turk PW, Milkowski DH, Kozlowski K. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A. 1994;91(4):1261–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mishra N, Nugent WH, Mahavadi S, Walsh SW. Mechanisms of enhanced vascular reactivity in preeclampsia. Hypertension. 2011;58(5):867–873.

    Article  CAS  PubMed  Google Scholar 

  75. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Preeclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007; 335(7627):974.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wen SW, Chen XK, Rodger M, et al. Folic acid supplementation in early second trimester and the risk of preeclampsia. Am J Obstet Gynecol. 2008;198(1):45 e1–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Walsh PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousa, A.A., Archer, K.J., Cappello, R. et al. DNA Methylation is Altered in Maternal Blood Vessels of Women With Preeclampsia. Reprod. Sci. 19, 1332–1342 (2012). https://doi.org/10.1177/1933719112450336

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112450336

Keywords

Navigation