Skip to main content

Advertisement

Log in

Stem Cells and Female Reproduction

  • Reviews
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000;287:1427–1430.

    Article  CAS  PubMed  Google Scholar 

  2. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–156.

    Article  CAS  PubMed  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  4. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999;283: 534–537.

    Article  CAS  PubMed  Google Scholar 

  5. Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multi-potent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3:778–784.

    Article  CAS  PubMed  Google Scholar 

  6. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA. 1997;94:4080–4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000;290: 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  8. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6:1229–1234.

    Article  CAS  PubMed  Google Scholar 

  9. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

    CAS  PubMed  Google Scholar 

  10. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–340.

    Article  CAS  PubMed  Google Scholar 

  11. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 1992;102:341–351.

    CAS  PubMed  Google Scholar 

  12. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology. 1994;134:277–286.

    Article  CAS  PubMed  Google Scholar 

  13. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9–20.

    Article  CAS  PubMed  Google Scholar 

  14. Cho KJ, Trzaska KA, Greco SJ, et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem Cells. 2005;23:383–391.

    Article  CAS  PubMed  Google Scholar 

  15. Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33:145–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–705.

    Article  CAS  PubMed  Google Scholar 

  17. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107:1395–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poulsom R, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001;195:229–235.

    Article  CAS  PubMed  Google Scholar 

  19. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284: 1168–1170.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari G, Cusella G, Angelis D, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279: 528–530.

    Article  Google Scholar 

  21. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999;401:390–394.

    CAS  PubMed  Google Scholar 

  22. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–228.

    Article  CAS  PubMed  Google Scholar 

  23. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Theise ND, Badve S, Saxen R, et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology. 2000;31:235–240.

    Article  CAS  PubMed  Google Scholar 

  25. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6:1229–1234.

    Article  CAS  PubMed  Google Scholar 

  26. Kopen G, Prockop D, Phinney D. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999;96:10711–10716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu F, Pan X, Chen G, et al. Hematopoietic stem cells mobilized by granulocyte colony-stimulating factor partly contribute to liver graft regeneration after partial orthotopic liver transplantation. Liver Transpl. 2006;12:1129–1137.

    Article  PubMed  Google Scholar 

  28. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164:247–256.

    Article  CAS  PubMed  Google Scholar 

  29. Brazelton TR, Rossi FM, Keshet GI, Blau HE. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290:1775–1779.

    Article  CAS  PubMed  Google Scholar 

  30. Preston SL, Alison MR, Forbes SJ, et al. The new stem cell biology: something for everyone. Mol Pathol. 2003;56:86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.

    CAS  PubMed  Google Scholar 

  32. Brinster RL. Germline stem cell transplantation and transgenesis. Science. 2002;296:2174–2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet. 2000;1:57–64.

    Article  CAS  PubMed  Google Scholar 

  34. Alvarez-Buylla A, Kirn JR, Nottebohm F. Birth of projection neurons in adult avian brain may be related to perceptual or motor learning. Science. 1990;249:1444–1446.

    Article  CAS  PubMed  Google Scholar 

  35. Bjerknes M, Cheng H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology. 1999;116:7–14.

    Article  CAS  PubMed  Google Scholar 

  36. Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development. 1999;126:2409–2418.

    CAS  PubMed  Google Scholar 

  37. Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell. 1996;85:331–343.

    Article  CAS  PubMed  Google Scholar 

  38. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423: 409–414.

    Article  CAS  PubMed  Google Scholar 

  39. Korinek V, Barker N, Willert K, et al. Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol Cell Biol. 1998;18:1248–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol. 2003;163:609–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andl T, Ahn K, Kairo A, et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development. 2004;131: 2257–2268.

    Article  CAS  PubMed  Google Scholar 

  42. Morrison SJ, Perez SE, Qiao Z, et al. Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell. 2000;101:499–510.

    Article  CAS  PubMed  Google Scholar 

  43. Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. Stimulation of human epidermal differentiation by delta–notch signalling at the boundaries of stem-cell clusters. Curr Biol. 2000;10: 491–500.

    Article  CAS  PubMed  Google Scholar 

  44. Carlesso N, Aster JC, Sklar J, Scadden DT. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood. 1999;93: 838–848.

    Article  CAS  PubMed  Google Scholar 

  45. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–631.

    Article  CAS  PubMed  Google Scholar 

  46. Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med. 2007;13:72–81.

    Article  CAS  PubMed  Google Scholar 

  47. Sneddon JB, Werb Z. Location, location, location: the cancer stem cell niche. Cell Stem Cell. 2007;13:607–611.

    Article  CAS  Google Scholar 

  48. Lin H. The tao of stem cells in the germline. Annu Rev Genet. 1997;31:455–491.

    Article  CAS  PubMed  Google Scholar 

  49. Lin H. The stem-cell niche theory: lessons from flies. Nat Rev Genet. 2002;3:931–940.

    Article  CAS  PubMed  Google Scholar 

  50. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001;414:98–104.

    Article  CAS  PubMed  Google Scholar 

  51. Lin H, Spradling AC. Germline stem cell division and egg chamber development in transplanted. Drosophila germaria. Dev Biol. 1993;159:140–152.

    Article  CAS  PubMed  Google Scholar 

  52. Borum K. Oogenesis in the mouse a study of the meiotic prophase. Exp Cell Res. 1961;24:495–507.

    Article  CAS  PubMed  Google Scholar 

  53. Faddy MJ, Jones EC, Edwards RG. An analytical model for ovarian follicle dynamics. J Exp Zool. 1976;197:173–185.

    Article  CAS  PubMed  Google Scholar 

  54. McLaren A. Meiosis and differentiation of mouse germ cells. Symp Soc Exp Biol. 1984;38:7–23.

    CAS  PubMed  Google Scholar 

  55. Faddy MJ. Follicle dynamics during ovarian ageing. Mol Cell Endocrinol. 2000;163:43–48.

    Article  CAS  PubMed  Google Scholar 

  56. Faddy MJ, Telfer E, Gosden RG. The kinetics of pre-antral follicle development in ovaries of CBA/Ca mice during the first 14 weeks of life. Cell Tissue Kinet. 1987;20:551–560.

    CAS  PubMed  Google Scholar 

  57. Gosden RG, Laing SC, Felicio LS, Nelson JF, Finch CE. Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. Biol Reprod. 198328255–260.

    Article  CAS  PubMed  Google Scholar 

  58. Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab. 1987;65:1231–1237.

    Article  CAS  PubMed  Google Scholar 

  59. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–150.

    Article  CAS  PubMed  Google Scholar 

  60. Kerr JB, Duckett R, Myers M, Britt KL, Mladenovska T, Findlay JK. Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction. 2006;132:95–109.

    Article  CAS  PubMed  Google Scholar 

  61. Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB. Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol. 2004;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee HJ, Selesniemi K, Niikura Y, et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol. 2007;25:3198–3204.

    Article  CAS  PubMed  Google Scholar 

  63. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature. 2006;441:1109–1114.

    Article  CAS  PubMed  Google Scholar 

  64. Kelly SJ. Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J Exp Zool. 1977;200:365–376.

    Article  CAS  PubMed  Google Scholar 

  65. Lawson KA, Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp. 1994;182:68–84.

    CAS  PubMed  Google Scholar 

  66. Tam PP, Zhou SX. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol. 1996;178: 124–132.

    Article  CAS  PubMed  Google Scholar 

  67. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA. 2003;100:11457–11462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004;427:148–154.

    Article  CAS  PubMed  Google Scholar 

  69. Hubner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science. 2003;300: 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  70. Bukovsky A, Keenan JA, Caudle MR, et al. Immunohistochemical studies of the adult human ovary: possible contribution of immune and epithelial factors to folliculogenesis. Am J Reprod Immunol. 1995;33:323–340.

    Article  CAS  PubMed  Google Scholar 

  71. Bukovsky A, Svetlikova M, Caudle MR. Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol. 2005;3:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004;32: D23-D26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dias Neto E, Correa RG, Verjovski-Almeida S, et al. Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. Proc Natl Acad Sci USA. 2000. ;97:3491–3496.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature. 2002;418:293–300.

    Article  CAS  PubMed  Google Scholar 

  75. Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004;101:6062–6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yoshimizu T, Sugiyama N, De Felice M, et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ. 1999;41:675–684.

    Article  CAS  PubMed  Google Scholar 

  77. Johnson J, Bagley J, Skaznik-Wikiel M, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303–315.

    Article  CAS  PubMed  Google Scholar 

  78. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305: 1157–1159.

    Article  CAS  PubMed  Google Scholar 

  79. Suzumori N, Yan C, Matzuk MM, Rajkovic A. Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech Dev. 2002;111:137–141.

    Article  CAS  PubMed  Google Scholar 

  80. Johnson J, Bagley J, Skaznik-Wikiel M, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303–315.

    Article  CAS  PubMed  Google Scholar 

  81. Tilly JL, Niikura Y, Rueda BR. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism? Biol Reprod. 2008; INPRESS.

  82. Donnez J, Dolmans MM, Demylle D, et al. A livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–1410.

    Article  CAS  PubMed  Google Scholar 

  83. Apperley JF, Reddy N. Mechanism and management of treatment-related gonadal failure in recipients of high dose chemoradiotherapy. Blood Rev. 1995;9:93–116.

    Article  CAS  PubMed  Google Scholar 

  84. Al-Hasani S, Diedrich K, van der Ven H, et al. Cryopreservation of human oocytes. Hum Reprod. 1987;2:695–700.

    Article  CAS  PubMed  Google Scholar 

  85. Carroll J, Wood MJ, Whittingham DG. Normal fertilization and development of frozen-thawed mouse oocytes: protective action of certain macromolecules. Biol Reprod. 1993;48:606–612.

    Article  CAS  PubMed  Google Scholar 

  86. Eroglu A, Toth TL, Toner M. Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes. Fertil Steril. 1998;69:944–957.

    Article  CAS  PubMed  Google Scholar 

  87. Gook DA, Osborn SM, Johnston WI. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod. 1993;8: 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  88. Porcu E, Fabbri R, Seracchioli R, Ciotti PM, Magrini O, Flamigni C. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril. 1997;68:724–726.

    Article  CAS  PubMed  Google Scholar 

  89. Yoon TK, Chung HM, Lim JM, Han SY, Ko JJ, Cha KY. Pregnancy and delivery of healthy infants developed from vitrified oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril. 2000;74:180–181.

    Article  CAS  PubMed  Google Scholar 

  90. Gosiengfiao Y. Progress, History and Promise of Ovarian Cryopreservation and Transplantation for Pediatric Cancer Patients. In: Woodruff TK, Snyder KA. eds. Oncofertility: Fertility Preservation for Cancer Survivors. US: Springer; New York, NY;2008:130.

    Google Scholar 

  91. Deanesly R. Immature rat ovaries grafted after freezing and thawing. J Endocrinol. 1954;11:197–200.

    Article  CAS  PubMed  Google Scholar 

  92. Kim SS, Battaglia DE, Soules MR. The future of human ovarian cryopreservation and transplantation: fertility and beyond. Fertil Steril. 2001;75:1049–1056.

    Article  CAS  PubMed  Google Scholar 

  93. Parrot D. The fertility of mice with orthotopic ovarian grafts derived from frozen tissue. J Reprod Fertil. 1960;1:230–244.

    Article  Google Scholar 

  94. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at —196 degrees C. Hum Reprod. 1994;9:597–603.

    Article  CAS  PubMed  Google Scholar 

  95. Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000;342:1919.

    Article  CAS  PubMed  Google Scholar 

  96. Oktay K, Buyuk E, Veeck L, et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;363:837–840.

    Article  PubMed  Google Scholar 

  97. Lee DM, Yeoman RR, Battaglia DE, et al. Live birth after ovarian tissue transplant. Nature. 2004;428:137–138.

    Article  CAS  PubMed  Google Scholar 

  98. Radford JA, Lieberman BA, Brison DR, et al. Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet. 2001;357:1172–1175.

    Article  CAS  PubMed  Google Scholar 

  99. Kim SS, Radford J, Harris M, et al. Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum Reprod. 2001;16:2056–2060.

    Article  CAS  PubMed  Google Scholar 

  100. Shaw JM, Bowles J, Koopman P, Wood EC, Trounson AO. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod. 1996;11:1668–1673.

    Article  CAS  PubMed  Google Scholar 

  101. Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11:1487–1491.

    Article  CAS  PubMed  Google Scholar 

  102. Silber SJ, Lenahan KM, Levine DJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med. 2005;353:58–63.

    Article  CAS  PubMed  Google Scholar 

  103. Donnez J, Dolmans MM, Pirard C, et al. Allograft of ovarian cortex between two genetically non-identical sisters: case report. Hum Reprod. 2007;22:2653–2659.

    Article  CAS  PubMed  Google Scholar 

  104. Silber SJ, DeRosa M, Pineda J, et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod. 2008;23:1531–1537.

    Article  CAS  PubMed  Google Scholar 

  105. Padykula HA. Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci. 1991;622:47–56.

    Article  CAS  PubMed  Google Scholar 

  106. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738–1750.

    Article  CAS  PubMed  Google Scholar 

  107. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292: 81–85.

    Article  CAS  PubMed  Google Scholar 

  108. Chan RW, Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells. 2006;24:1529–1538.

    Article  CAS  PubMed  Google Scholar 

  109. Dimitrov R, Timeva T, Kyurkchiev D, et al. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction. 2008;135:551–558.

    Article  CAS  PubMed  Google Scholar 

  110. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25:2082–2086.

    Article  CAS  PubMed  Google Scholar 

  111. Bratincsák A, Brownstein MJ, Cassiani-Ingoni R, et al. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells. 2007;25:2820–2826.

    Article  CAS  PubMed  Google Scholar 

  112. Mints M, Jansson M, Sadeghi B, et al. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod. 2008;23:139–143.

    Article  CAS  PubMed  Google Scholar 

  113. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903–2911.

    Article  CAS  PubMed  Google Scholar 

  114. Wolff EF, Wolff AB, Du H, Taylor HS. Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci. 2007;14:524–533.

    Article  CAS  PubMed  Google Scholar 

  115. Moore MA, Metcalf D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol. 1970;18:279–296.

    Article  CAS  PubMed  Google Scholar 

  116. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86: 897–906.

    Article  CAS  PubMed  Google Scholar 

  117. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994;1:291–301.

    Article  CAS  PubMed  Google Scholar 

  118. Bruijn MF, Speck NA, Peeters MC, Dzierzak E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 2000;19:2465–2474.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, Dieterlen-Lievre F. Mouse placenta is a major hematopoietic organ. Development. 2003;130:5437–5444.

    Article  CAS  PubMed  Google Scholar 

  120. Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8:365–375.

    Article  CAS  PubMed  Google Scholar 

  121. Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell. 2005;8:377–387.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Li CD, Jiang XX, Li HL, Tang PH, Mao N. Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl). 2004;117:882–887.

    CAS  Google Scholar 

  123. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22:649–658.

    Article  CAS  PubMed  Google Scholar 

  124. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22:1338–1345.

    Article  Google Scholar 

  125. Zhang Y, Li C, Jiang X, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol. 2004;32:657–664.

    Article  CAS  PubMed  Google Scholar 

  126. Chien CC, Yen BL, Lee FK, et al. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells. 2006;24:1759–1768.

    Article  PubMed  Google Scholar 

  127. Yen BL, Chien CC, Chen YC, et al. Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng Part A. 2008;14:9–17.

    Article  CAS  PubMed  Google Scholar 

  128. Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet. 1969;1:1119–1122.

    Article  CAS  PubMed  Google Scholar 

  129. Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci USA. 1979;76:1453–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Krabchi K, Gros-Louis F, Yan J, et al. Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques. Clin Genet. 2001;60:145–150.

    Article  CAS  PubMed  Google Scholar 

  131. Ariga H, Ohto H, Busch MP, et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2001;41:1524–1530.

    Article  CAS  PubMed  Google Scholar 

  132. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA. 1996;93:705–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guetta E, Gordon D, Simchen MJ, Goldman B, Barkai G. Hematopoietic progenitor cells as targets for non-invasive prenatal diagnosis: detection of fetal CD34+ cells and assessment of post-delivery persistence in the maternal circulation. Blood Cells Mol Dis. 2003;30:13–21.

    Article  CAS  PubMed  Google Scholar 

  134. Bianchi DW. Fetal cells in the maternal circulation: feasibility for prenatal diagnosis. Br J Haematol. 1999;105: 574–583.

    Article  CAS  PubMed  Google Scholar 

  135. O’Donoghue K, Choolani M, Chan J, et al. Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod. 2003;9: 497–502.

    Article  PubMed  Google Scholar 

  136. Osada H, Doi S, Fukushima T, Nakauchi H, Seki K, Sekiya S. Detection of fetal HPCs in maternal circulation after delivery. Transfusion. 2001;41:499–503.

    Article  CAS  PubMed  Google Scholar 

  137. van Wijk IJ, van Vugt JM, Mulders MA, Konst AA, Weima SM, Oudejans CB. Enrichment of fetal trophoblast cells from the maternal peripheral blood followed by detection of fetal deoxyribonucleic acid with a nested X/Y polymerase chain reaction. Am J Obstet Gynecol. 1996;174: 871–878.

    Article  PubMed  Google Scholar 

  138. Jimenez SA, Artlett CM. Microchimerism and systemic sclerosis. Curr Opin Rheumatol. 2005;17:86–90.

    Article  PubMed  Google Scholar 

  139. Artlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med. 1998;338:1186–1191.

    Article  CAS  PubMed  Google Scholar 

  140. Nelson JL, Furst DE, Maloney S, et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998;351:559–562.

    Article  CAS  PubMed  Google Scholar 

  141. Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet. 1998;352:1904–1905.

    Article  CAS  PubMed  Google Scholar 

  142. Lo YM, Leung TN, Tein MS, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem. 1999;45:184–188.

    Article  CAS  PubMed  Google Scholar 

  143. Bianchi DW, Williams JM, Sullivan LM, Hanson FW, Klinger KW, Shuber AP. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet. 1997;61:822–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Srivatsa B, Srivatsa S, Johnson KL, Samura O, Lee SL, Bianchi DW. Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet. 2001;358:2034–2038.

    Article  CAS  PubMed  Google Scholar 

  145. Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA. 2004;292:75–80.

    Article  CAS  PubMed  Google Scholar 

  146. Wang Y, Iwatani H, Ito T, et al. Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Res Commun. 2004;325:961–967.

    Article  CAS  PubMed  Google Scholar 

  147. O’Donoghue K, Sultan HA, Al-Allaf FA, Anderson JR, Wyatt-Ashmead J, Fisk NM. Microchimeric fetal cells cluster at sites of tissue injury in lung decades after pregnancy. Reprod Biomed. 2008;16:382–390.

    Article  Google Scholar 

  148. Dubernard G, Aractingi S, Oster M, et al. Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res. 2008;10:R14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Mackillop WJ, Ciampi A, Till JE, Buick RN. A stem cell model of human tumor growth: implications for tumor cell clonogenic assays. J Natl Cancer Inst. 1983;70:9–16.

    CAS  PubMed  Google Scholar 

  150. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111.

    Article  CAS  PubMed  Google Scholar 

  151. Kleber M, Sommer L. Wnt signaling and the regulation of stem cell function. Curr Opin Cell. Biol. 2004;16:681–687.

    Article  CAS  PubMed  Google Scholar 

  152. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850.

    Article  CAS  PubMed  Google Scholar 

  153. Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R. Role of members of the Wnt gene family in human hematopoiesis. Blood. 1998;92:3189–3202.

    Article  Google Scholar 

  154. Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood. 1997;89:3624–3635.

    Article  CAS  PubMed  Google Scholar 

  155. Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998;19:379–383.

    Article  CAS  PubMed  Google Scholar 

  156. Gat U, DasGupta R, Degenstein L, Fuchs E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell. 1998;95:605–614.

    Article  CAS  PubMed  Google Scholar 

  157. Radtke F, Raj K. The role of notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3:756–767.

    Article  CAS  PubMed  Google Scholar 

  158. Karanu FN, Murdoch B, Gallacher L, et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med. 2000;192:1365–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med. 2000;6:1278–1281.

    Article  CAS  PubMed  Google Scholar 

  160. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422:313–317.

    Article  CAS  PubMed  Google Scholar 

  161. Thayer SP, Di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003;425:851–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2001;2:172–180.

    Article  CAS  PubMed  Google Scholar 

  163. Lawrence HJ, Helgason CD, Sauvageau G, et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood. 1997;89:1922–1930.

    Article  CAS  PubMed  Google Scholar 

  164. Kappen C. Disruption of the homeobox gene Hoxb-6 in mice results in increased numbers of early erythrocyte progenitors. Am J Hematol. 2000;65:111–118.

    Article  CAS  PubMed  Google Scholar 

  165. Pineault N, Helgason CD, Lawrence HJ, Humphries RK. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol. 2002;30:49–57.

    Article  CAS  PubMed  Google Scholar 

  166. Bonnet D, Dick JE. Human acutemyeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–737.

    Article  CAS  PubMed  Google Scholar 

  167. Zou GM. Cancer stem cells in leukemia, recent advances. J Cell Physiol. 2007;213:440–444.

    Article  CAS  PubMed  Google Scholar 

  168. Weissman IL. The road ended up at stem cell. Immunol Rev. 2002;185:159–174.

    Article  CAS  PubMed  Google Scholar 

  169. Weissman IL. Stem cells, units of development, units of regeneration, and units in evolution. Cell. 2000;100: 157–168.

    Article  CAS  PubMed  Google Scholar 

  170. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–743.

    Article  CAS  PubMed  Google Scholar 

  171. Taussig DC, Pearce DJ, Simpson C, et al. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005;106:4086–4092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. So CW, Karsunky H, Wong P, Weissman IL, Cleary ML. Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood. 2004;103:3192–3199.

    Article  CAS  PubMed  Google Scholar 

  173. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442:818–822.

    Article  CAS  PubMed  Google Scholar 

  174. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–5828.

    CAS  PubMed  Google Scholar 

  176. Gibbs CP, Kukekov VG, Reith JD, et al. Stem-like cells in bone sarcomas, implications for tumorigenesis. Neoplasia. 2005;7:967–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fang D, Nguyen TK, Leishear K, et al. A tumorigenic sub-population with stem cell properties in melanomas. Cancer Res. 2005;65:9328–9337.

    Article  CAS  PubMed  Google Scholar 

  178. Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–835.

    Article  CAS  PubMed  Google Scholar 

  179. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–10951.

    Article  CAS  PubMed  Google Scholar 

  180. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancerinitiating cells. Nature. 2007;445:111–115.

    Article  CAS  PubMed  Google Scholar 

  181. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–110.

    Article  PubMed  CAS  Google Scholar 

  182. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997;57:1338–1345.

    Article  CAS  PubMed  Google Scholar 

  183. Du H, Taylor HS. Molecular regulation of mullerian development by Hox genes. Ann NY Acad Sci. 2004;1034:152–65.

    Article  CAS  PubMed  Google Scholar 

  184. Cheng W, Liu J, Yoshida H, Rosen D, Naora H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med. 2005;11:531–537.

    Article  CAS  PubMed  Google Scholar 

  185. Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65: 3025–3029.

    Article  CAS  PubMed  Google Scholar 

  186. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797–1806.

    Article  CAS  PubMed  Google Scholar 

  187. Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997;3:1337–1345.

    Article  CAS  PubMed  Google Scholar 

  188. Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res. 2005;65:6207–6219.

    Article  CAS  PubMed  Google Scholar 

  189. Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24:506–513.

    Article  CAS  PubMed  Google Scholar 

  190. Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res. 2006;312:3701–3710.

    Article  CAS  PubMed  Google Scholar 

  191. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA. 2006;103:11154–11159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Friel AM, Sergent PA, Patnaude C, et al. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle. 2008;7:242–249.

    Article  CAS  PubMed  Google Scholar 

  193. Götte M, Wolf M, Staebler A, et al. Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J Pathol. 2008;215:317–329.

    Article  CAS  PubMed  Google Scholar 

  194. Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T. Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res. 2005;306:349–356.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh S. Taylor MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H., Taylor, H.S. Stem Cells and Female Reproduction. Reprod. Sci. 16, 126–139 (2009). https://doi.org/10.1177/1933719108329956

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108329956

Key words

Navigation