Skip to main content
Log in

Reciprocal Changes in Maternal and Fetal Metabolism of Corticosterone in Rat During Gestation

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

The objective of this study was to investigate the role of 11β-hydroxysteroid dehydrogenases (11HSD1 and 11HSD2) in determining the fetal concentration of glucocorticoids.

Methods

The expression patterns for mRNA abundance, protein level, and enzyme activities of placental and fetal 11HSD1 and 11HSD2 were assessed from embryonic day 13 (E13) to day 21 (E21; term E22). The transplacental passage of maternal corticosterone and its contribution to fetal glucocorticoids was also studied.

Results

Placental 11HSD1 mRNA decreased between days E13 and E14 and then remained at much lower values up to E21. Similarly, NADP+-dependent 11β-oxidation and 11-reduction were lower in late gestation. In contrast, placental 11HSD2 mRNA and protein decreased between E13 and E21. Dithiothreitol increased the activity of 11HSD2 and the output of 11-dehydrocorticosterone into fetal circulation. The fetal activity of 11HSD1 increased and 11HSD2 decreased between E16 and E21.

Conclusions

The final third of gestation is accompanied by reciprocal changes in placental and fetal metabolism of corticosterone due to changes in 11HSD1 and 11HSD2 not only at the level of transcription but also at a posttranslational level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction. 2004;127:515–526.

    Article  CAS  PubMed  Google Scholar 

  2. Challis JR, Sloboda D, Matthews SG, et al.The fetal placental hypothalamic-pituitary-adrenal (HPA) axis, parturition and post natal health. Mol Cell Endocrinol. 2001;185:135–144.

    Article  CAS  PubMed  Google Scholar 

  3. Alfaidy N, Li W, MacIntosh T, Yang K, Challis J. Late gestation increase in 11 [3-hydroxysteroid dehydrogenase 1 expression in human fetal membranes: a novel intrauterine source of cortisol.J Clin Endocrinol Metab. 2003;88:5033–5038.

    Article  CAS  PubMed  Google Scholar 

  4. Benediktsson R, Calder AA, Edwards CR, Seckl J. Placental 11β-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol. 1997;46:161–166.

    Article  CAS  Google Scholar 

  5. Sun K,Adamson SL,Yang K, Challis J. Interconversion of cortisol and cortisone by 11β-hydroxysteroid dehydrogenases type 1 and 2 in the perfused human placenta. Placenta. 1999;20:13–19.

    Article  PubMed  Google Scholar 

  6. Staud F, Mazancová K, Mikšík I, Pávek P, Fendrich Z, Pácha J. Corticosterone transfer and metabolism in the dually perfused rat placenta: effect of 11β-hydroxysteroid dehydrogenase type 2. Placenta. 2006;27:171–180.

    Article  CAS  PubMed  Google Scholar 

  7. Beitins IZ, Bayard F, Ances IG, Kowarski A, Migeon CJ. The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term. Pediatr Res. 1973;7:509–519.

    Article  CAS  PubMed  Google Scholar 

  8. Klemcke HG. Placental metabolism of cortisol at mid- and late gestation in swine. Biol Reprod. 1995;53:1293–1301.

    Article  CAS  PubMed  Google Scholar 

  9. Venihaki M, Carrigan A, Dikkes, Majzoub JA. Circadian rise in maternal glucocorticoid prevents pulmonary dysplasia in fetal mice with adrenal insufficiency. Proc Natl Acad Sci U S A. 2000;97:7336–7341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001;185:61–71.

    Article  CAS  PubMed  Google Scholar 

  11. Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3:479–488.

    Article  CAS  PubMed  Google Scholar 

  12. Krozowski Z, Maguire JA, Stein-Oakley AN, Dowling J, Smith RE, Andrews R. Immunohistochemical localization of the 11β-hydroxysteroid dehydrogenase type II enzyme in human kidney and placenta. J Clin Endocrinol Metab. 1995;80:2203–2209.

    CAS  PubMed  Google Scholar 

  13. Sun K,Yang K, Challis J. Differential expression of 11β-hydroxysteroid dehydrogenase types 1 and 2 in human placenta and fetal membranes. J Clin Endocrinol Metab. 1997;82:300–305.

    CAS  PubMed  Google Scholar 

  14. Pepe GJ, Babischkin JS, Burch MG, Leavitt MG, Albrecht E. Developmental increase in expression of the messenger ribonucleic acid and protein levels of 11β-hydroxysteroid dehydrogenase types 1 and 2 in the baboon placenta. Endocrinology. 1996;137:5678–5684.

    Article  CAS  PubMed  Google Scholar 

  15. Pepe GJ, Burch M. Albrecht ED. Expression of the 11β-hydroxysteroid dehydrogenase types 1 and 2 proteins in human and baboon placental syncytiotrophoblast. Placenta. 1999;20:575–582.

    Article  CAS  PubMed  Google Scholar 

  16. Roland BL, Funder J. Localization of 11β-hydroxysteroid dehydrogenase type 2 in rat tissues: in situ studies. Endocrinology. 1996;137:1123–1128.

    Article  CAS  PubMed  Google Scholar 

  17. Burton PJ, Smith RE, Krozowski ZS,Waddell B. Zonal distribution of 11β-hydroxysteroid dehydrogenase types 1 and 2 messenger ribonucleic acid expression in the rat placenta and decidua during late pregnancy. Biol Reprod. 1996;55:1023–1028.

    Article  CAS  PubMed  Google Scholar 

  18. Waddell BJ, Benediktsson R, Brown RW, Seckl J. Tissue-specific messenger ribonucleic acid expression of 11β-hydroxysteroid dehydrogenase types 1 and 2 and the glucocorticoid receptor within rat placenta suggests exquisite local control of glucocorticoid action. Endocrinology. 1998;139:1517–1523.

    Article  CAS  PubMed  Google Scholar 

  19. Brown RW, Diaz R, Robson AC, et al.The ontogeny of 11β-hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology. 1996;137:794–797.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson A, Han VK, Yang K. Spatial and temporal patterns of expression of 11β-hydroxysteroid dehydrogenase types 1 and 2 messenger RNA and glucocorticoid receptor protein in the murine placenta and uterus during late pregnancy. Biol Reprod. 2002;67:1708–1718.

    Article  CAS  PubMed  Google Scholar 

  21. Klemcke HG, Christenson R. Porcine placental 11β-hydroxysteroid dehydrogenase activity. Biol Reprod. 1996;55: 217–223.

    Article  CAS  PubMed  Google Scholar 

  22. Lesage J, Blondeau B, Grino M, Breant B, Dupouy JP. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology. 2001;142:1692–1702.

    Article  CAS  PubMed  Google Scholar 

  23. Mazancová K, Mikšík I, Kunes J, Pácha J. Placental 11β-hydroxysteroid dehydrogenase in Dahl and spontaneously hypertensive rats. Am J Hypertens. 2003;16:401–406.

    Article  PubMed  CAS  Google Scholar 

  24. Pácha J, Mikšík I, Mrnka L, et al. Corticosteroid regulation of colonic ion transport during postnatal development: methods for corticosteroid analysis. Physiol Res. 2004;53:S63–S80.

    PubMed  Google Scholar 

  25. Gomez-Sanchez EP, Ganjam V, Chen YJ, Liu Y, Clark SA, Gomez-Sanchez CE. The 11β-hydroxysteroid dehydrogenase 2 exists as an inactive dimer. Steroids. 2001;66:845–848.

    Article  CAS  PubMed  Google Scholar 

  26. Niu P, Yang K. The 11β-hydroxysteroid dehydrogenase type 2 activity in human placenta microsomes is inactivated by zinc and the sulfhydryl modifying reagent N-ethylmaleimide. Biochim Biophys Acta. 2002;1594:364–371.

    Article  CAS  PubMed  Google Scholar 

  27. Pepe GJ, Albrecht ED. Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocr Rev. 1995;16:608–648.

    CAS  PubMed  Google Scholar 

  28. Diaz R, Brown RW, Seckl J. Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J Neurosci. 1998;18:2570–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dupouy JP. Responses of rat fetal adrenals to synthetic adrenocorticotrophic hormone and α-melanocyte-stimulating hormone in-vivo and in-vitro studies. J Endocrinol. 1982;92:23–30.

    Article  CAS  PubMed  Google Scholar 

  30. Dupont E, Rheaume E, Simard J, Luu-The V, Labrie F, Pelletier G. Ontogenesis of 3β-hydroxysteroid dehydrogenase/A5-A4 isomerase in the rat adrenal as revealed by immunocytochemistry and in situ hybridization. Endocrinology. 1991;129:2687–2692.

    Article  CAS  PubMed  Google Scholar 

  31. Pepe GJ, Albrecht ED. Transuteroplacental metabolism of cortisol and cortisone during mid- and late gestation in the baboon. Endocrinology. 1984;115:1946–1951.

    Article  CAS  PubMed  Google Scholar 

  32. Burton PJ, Waddell BJ. 11β-Hydroxysteroid dehydrogenase in the rat placenta: developmental changes and the effects of altered glucocorticoid exposure. J Endocrinol. 1994;143:505–513.

    Article  CAS  PubMed  Google Scholar 

  33. Shams M, Kilby MD, Somerset DA, et al. 11β-Hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum Reprod. 1998;13:799–804.

    Article  CAS  PubMed  Google Scholar 

  34. Hundertmark S, Bühler H, Fromm M, et al. Ontogeny of 11β-hydroxysteroid dehydrogenase: activity in the placenta, kidney, colon of fetal rats and rabbits. Horm Metab Res. 2001;33:78–83.

    Article  CAS  PubMed  Google Scholar 

  35. Hoffmann F, Maser E. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab Rev. 2007;39:87–144.

    Article  CAS  PubMed  Google Scholar 

  36. Gomez-Sanchez EP, Ganjam V, Chen YJ, et al. Regulation of 11β-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol. Am J Physiol. 2003;285:E272–E279.

    CAS  Google Scholar 

  37. Hardy DB, Pereria LE, Yang K. Prostaglandins and leukotriene B4 are potent inhibitors of 11β-hydroxysteroid dehydrogenase type 2 activity in human choriocarcinoma JEG-3 cells. Biol Reprod. 1999;61:40–45.

    Article  CAS  PubMed  Google Scholar 

  38. Jamieson PM, Walker BR, Chapman KE, Andrew R, Rossiter S, Seckl J. 11β-Hydroxysteroid dehydrogenase type 1 is a predominant 11β-reductase in the intact perfused rat liver. J Endocrinol. 2000;165:685–692.

    Article  CAS  PubMed  Google Scholar 

  39. Hundertmark S, Ragosch V, Schein B, et al. Gestational age dependence of 11β-hydroxysteroid dehydrogenase and its relationship to the enzymes of phosphatidylcholine synthesis in lung and liver of fetal rat. Biochim Biophys Acta. 1994;1210: 348–354.

    Article  CAS  PubMed  Google Scholar 

  40. Speirs HJ, Seckl JR, Brown R. Ontogeny of glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol. 2004;181:105–116.

    Article  CAS  PubMed  Google Scholar 

  41. Thompson A, Han VK, Yang K. Differential expression of 11β-hydroxysteroid dehydrogenase types 1 and 2 mRNA and glucocorticoid receptor protein during mouse embryonic development. J Steroid Biochem Mol Biol. 2004;88: 367–375.

    Article  CAS  PubMed  Google Scholar 

  42. Bujalska IJ, Draper N, Michailidou Z, et al. Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11β-hydroxysteroid dehydrogenase type 1. J Mol Endocrinol. 2005;34:675–684.

    Article  CAS  PubMed  Google Scholar 

  43. Lavery GG,Walker EA, Draper N, et al. Hexose-6-phosphate dehydrogenase knock-out mice lack 11β-hydroxysteroid dehydrogenase type 1-mediated glucocorticoid generation. J Biol Chem. 2006;281:6546–6551.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pácha PhD.

Additional information

This study was supported by grants KJB5011402 and AV0Z50110509 from Academy of Sciences and by grant no. 102/2006/C/FaF from the Grant Agency of Charles University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vagnerová, K., Vacková, Z., Klusoňová, P. et al. Reciprocal Changes in Maternal and Fetal Metabolism of Corticosterone in Rat During Gestation. Reprod. Sci. 15, 921–931 (2008). https://doi.org/10.1177/1933719108319161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108319161

Key words

Navigation