Skip to main content
Log in

Estrogen-Induced Hypothalamic Synaptic Plasticity and Pituitary Sensitization in the Control of the Estrogen-Induced Gonadotrophin Surge

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Proper gonadal function requires coordinated (feedback) interactions between the gonads, adenohypophysis, and brain: the gonads elaborate sex steroids (progestins, androgens, and estrogens) and proteins (inhibin-activin family) during gamete development. In both sexes, the brain-pituitary gonadotrophin-regulating interaction is coordinated by estradiol through its opposing actions on pituitary gonadotrophs (sensitization of the response to gonadotrophin-releasing hormone [GnRH]) versus hypothalamic neurons (inhibition of GnRH secretion). This dynamic tension between the gonadotrophs and the GnRH cells in the brain regulates the circulating gonadotrophins and is termed reciprocal/negative feedback. In females, reciprocal/negative feedback dominates ∼ 90% of the ovarian cycle. In a spectacular exception, the dynamic tension is broken during the surge of circulating estrogen that marks follicle and oocyte(s) maturation. The cause is an estradiol-induced disinhibition of the GnRH neurons that releases GnRH secretion to the highly sensitized pituitary gonadotrophs that in turn release the gonadotrophin surge (the estrogen-induced gonadotrophin surge [EIGS], also known as positive feedback). Studies during the past 4 decades have shown this disinhibition to result from estrogen-induced synaptic plasticity (EISP), including a reversible ∼ 50% loss in arcuate nucleus synapses. The disinhibited GnRH secretion occurs during maximal gonadotroph sensitization and results in the EIGS. Specific immunoneutralization of estradiol blocks the EISP and EIGS. The EISP is accompanied by increases in insulinlike growth factor 1, polysialylated neural cell adhesion molecule, and ezrin, 3 proteins that the authors believe are the links between estrogen-induced astroglial extension and the EISP that releases GnRH secretion at the moment of maximal sensitization of the pituitary gonadotrophs. The result is the paradoxical surge of gonadotrophins at the peak of ovarian estrogen secretion and the triggering of ovulation. This enhanced understanding of the mechanics of gonadotrophin control clarifies elements of the involved feedback loops and opens the way to a better understanding of the neurobiology of reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris GW, Naftolin F. The hypothalamus and control of ovulation. Br Med Bull. 1970;26:3–9.

    Article  CAS  PubMed  Google Scholar 

  2. Knobil E., Plant TM, Wildt L., Belchetz PE, Marshall G. Control of the rhesus monkey menstrual cycle: permissive role of hypothalamic gonadotropin-releasing hormone. Science. 1980;207: 1371–1373.

    Article  CAS  PubMed  Google Scholar 

  3. Naftolin F., Zreik T., Garcia-Segura L., Horvath T. Neuroendocrine control of reproduction. In: Seifer DB, Samuels P, Kniss DA, eds. The Physiologic Basis of Gynecology and Obstetrics. Philadelphia, Pa: Lippincott, Williams and Wilkins; 2001:63–74.

    Google Scholar 

  4. Burger HG Evidence for a negative feedback role of inhibin in follicle stimulating hormone regulation in women. Hum Reprod. 1993;8(suppl 2):129–132.

    Article  CAS  PubMed  Google Scholar 

  5. Nillius SJ, Wide L. Variation in LH and FSH response to LH-releasing hormone during the menstrual cycle. J Obstet Gynaecol Br Commonw. 1972;79:865–873.

    Article  CAS  PubMed  Google Scholar 

  6. Corker CS, Naftolin F., Exley D. Interrelationship between plasma luteinizing hormone and oestradiol in the human menstrual cycle. Nature. 1969;222:1063.

    Article  CAS  PubMed  Google Scholar 

  7. Judd SJ, Rakoff JS, Yen SS Inhibition of gonadotropin and prolactin release by dopamine: effect of endogenous estradiol levels. J Clin Endocrinol Metab. 1978;47:494–498.

    Article  CAS  PubMed  Google Scholar 

  8. Ropert JF, Quigley ME, Yen SS The dopaminergic inhibition of LH secretion during the menstrual cycle. Life Sci. 1984; 34:2067–2073.

    Article  CAS  PubMed  Google Scholar 

  9. Kalra SP, Kalra PS Neural regulation of luteinizing hormone secretion in the rat. Endocr Rev. 1983;4:311–351.

    Article  CAS  PubMed  Google Scholar 

  10. Gore AC, Terasawa E. Neural circuits regulating pulsatile luteinizing hormone release in the female guinea-pig: opioid, adrenergic and serotonergic interactions. J Neuroendocrinol. 2001;13:239–248.

    Article  CAS  PubMed  Google Scholar 

  11. Malyala A., Kelly MJ, Ronnekleiv OK Estrogen modulation of hypothalamic neurons: activation of multiple signaling pathways and gene expression changes. Steroids. 2005;70: 397–406.

    Article  CAS  PubMed  Google Scholar 

  12. Rossmanith WG, Mortola JF, Yen SS Role of endogenous opioid peptides in the initiation of the midcycle luteinizing hormone surge in normal cycling women. J Clin Endocrinol Metab. 1988;67:695–700.

    Article  CAS  PubMed  Google Scholar 

  13. Ferin M., Dyrenfurth I., Cowchock S., Warren M., Wiele RL Active immunization to 17 beta-estradiol and its effects upon the reproductive cycle of the rhesus monkey. Endocrinology. 1974;94:765–776.

    Article  CAS  PubMed  Google Scholar 

  14. Ferin M., Tempone A., Zimmering PE, Van de Wiele RL Effect of antibodies to 17beta-estradiol and progesterone on the estrous cycle of the rat. Endocrinology. 1969;85:1070–1078.

    Article  CAS  PubMed  Google Scholar 

  15. Naftolin F., Mor G., Horvath TL, et al. Synaptic remodeling in the arcuate nucleus during the estrous cycle is induced by estrogen and precedes the preovulatory gonadotropin surge. Endocrinology. 1996;137:5576–5580.

    Article  CAS  PubMed  Google Scholar 

  16. Zsarnovszky A., Horvath TL, Garcia-Segura LM, Horvath B., Naftolin F. Oestrogen-induced changes in the synaptology of the monkey (Cercopithecus aethiops) arcuate nucleus during gonadotropin feedback. J Neuroendocrinol. 2001;13:22–28.

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Galaz MC, Morschl E., Chowen JA, Torres-Aleman I., Naftolin F., Garcia-Segura LM Role of astroglia and insulin-like growth factor-I in gonadal hormone-dependent synaptic plasticity. Brain Res Bull. 1997;44:525–531.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Segura LM, Canas B., Parducz A., et al. Estradiol promotion of changes in the morphology of astroglia growing in culture depends on the expression of polysialic acid of neural membranes. Glia. 1995;13:209–216.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Segura LM, McCarthy MM Minireview: role of glia in neuroendocrine function. Endocrinology. 2004;145:1082–1086.

    Article  CAS  PubMed  Google Scholar 

  20. MacLusky NJ, Naftolin F. Sexual differentiation of the central nervous system. Science. 1981;211:1294–1302.

    Article  CAS  PubMed  Google Scholar 

  21. Pau KY, Spies HG Neuroendocrine signals in the regulation of gonadotropin-releasing hormone secretion. Chin J Physiol. 1997;40:181–196.

    CAS  PubMed  Google Scholar 

  22. Soendoro T., Diamond MP, Pepperell JR, Naftolin F. The in vitro perifused rat ovary: I. Steroid secretion in response to ramp and pulsatile stimulation with luteinizing hormone and follicle stimulating hormone. Gynecol Endocrinol. 1992;6:229–238.

    Article  CAS  PubMed  Google Scholar 

  23. Rebar R., Perlman D., Naftolin F., Yen SS The estimation of pituitary luteinizing hormone secretion. J Clin Endocrinol Metab. 1973;37:917–927.

    Article  CAS  PubMed  Google Scholar 

  24. Naftolin F., Ryan KJ, Davies IJ, et al. The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res. 1975;31:295–319.

    CAS  PubMed  Google Scholar 

  25. Schindler AE Steroid metabolism of fetal tissues. II. Conversion of androstenedione to estrone. Am J Obstet Gynecol. 1975;123: 265–268.

    Article  CAS  PubMed  Google Scholar 

  26. McArdle CA, Schomerus E., Groner I., Poch A. Estradiol regulates gonadotropin-releasing hormone receptor number, growth and inositol phosphate production in alpha T3-1 cells. Mol Cell Endocrinol. 1992;87:95–103.

    Article  CAS  PubMed  Google Scholar 

  27. Gordan JD, Attardi BJ, Pfaff DW Mathematical exploration of pulsatility in cultured gonadotropin-releasing hormone neurons. Neuroendocrinology. 1998;67:2–17.

    Article  CAS  PubMed  Google Scholar 

  28. Moenter SM, Caraty A., Locatelli A., Karsch FJ Pattern of gonadotropin-releasing hormone (GnRH) secretion leading up to ovulation in the ewe: existence of a preovulatory GnRH surge. Endocrinology. 1991;129:1175–1182.

    Article  CAS  PubMed  Google Scholar 

  29. Lopez FJ, Merchenthaler IJ, Moretto M., Negro-Vilar A. Modulating mechanisms of neuroendocrine cell activity: the LHRH pulse generator. Cell Mol Neurobiol. 1998;18:125–146.

    Article  CAS  PubMed  Google Scholar 

  30. Terasawa E., Schanhofer WK, Keen KL, Luchansky L. Intracellular Ca(2+) oscillations in luteinizing hormone— releasing hormone neurons derived from the embryonic olfactory placode of the rhesus monkey. J Neurosci. 1999;19: 5898–5909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leranth C., MacLusky N., Naftolin F. Interconnections Between Neurotransmitter- and Neuropeptide-Containing Neurons Involved in Gonadotropin Release in the Rat. New York: Plenum; 1986.

    Google Scholar 

  32. Lawson MA, Macconell LA, Kim J., Powl BT, Nelson SB, Mellon PL Neuron-specific expression in vivo by defined transcription regulatory elements of the GnRH gene. Endocrinology. 2002;143:1404–1412.

    Article  CAS  PubMed  Google Scholar 

  33. Witkin JW, Xiao E., Popilskis S., Ferin M., Silverman AJ FOS expression in the gonadotropin-releasing hormone (GnRH) neuron does not increase during the ovarian steroid-induced GnRH surge in the rhesus monkey. Endocrinology. 1994;135: 956–961.

    Article  CAS  PubMed  Google Scholar 

  34. Mizuno M., Terasawa E. Search for neural substrates mediating inhibitory effects of oestrogen on pulsatile luteinising hormone—releasing hormone release in vivo in ovariectomized female rhesus monkeys (Macaca mulatta). J Neuroendocrinol. 2005; 17:238–245.

    Article  CAS  PubMed  Google Scholar 

  35. Clayton RN, Solano AR, Garcia-Vela A., Dufau ML, Catt KJ Regulation of pituitary receptors for gonadotropin-releasing hormone during the rat estrous cycle. Endocrinology. 1980; 107:699–706.

    Article  CAS  PubMed  Google Scholar 

  36. Taga M., Minaguchi H., Kigawa T., Sakamoto S. Effects of sex steroid hormones on rat anterior pituitary LH-RH receptor. Nippon Sanka Fujinka Gakkai Zasshi. 1982;34:627–633.

    CAS  PubMed  Google Scholar 

  37. Emons G., Hoffmann HG, Brack C., et al. Modulation of gonadotropin-releasing hormone receptor concentration in cultured female rat pituitary cells by estradiol treatment. J Steroid Biochem. 1988;31:751–756.

    Article  CAS  PubMed  Google Scholar 

  38. Naftolin F., Yen SS, Tsai CC Rapid cycling of plasma gonadotrophins in normal men as demonstrated by frequent sampling. Nat New Biol. 1972;236:92–93.

    Article  CAS  Google Scholar 

  39. Yen SS, Tsai CC, Naftolin F., Vandenberg G., Ajabor L. Pulsatile patterns of gonadotropin release in subjects with and without ovarian function. J Clin Endocrinol Metab. 1972;34:671–675.

    Article  CAS  PubMed  Google Scholar 

  40. Matsumoto A., Arai Y., Urano A., Hyodo S. Molecular basis of neuronal plasticity to gonadal steroids. Funct Neurol. 1995;10:59–76.

    CAS  PubMed  Google Scholar 

  41. Witkin JW, Ferin M., Popilskis SJ, Silverman AJ Effects of gonadal steroids on the ultrastructure of GnRH neurons in the rhesus monkey: synaptic input and glial apposition. Endocrinology. 1991;129:1083–1092.

    Article  CAS  PubMed  Google Scholar 

  42. Woolley CS Effects of oestradiol on hippocampal circuitry. Novartis Found Symp. 2000;230:173–180.

    CAS  PubMed  Google Scholar 

  43. Naftolin F., Leranth C., Garcia-Segura L. Ultrastructural changes in hypothalamic cells during estrogen-induced gonadotrophin feedback. Neuroprotocols. 1992;1:16–26.

    Article  CAS  Google Scholar 

  44. Naftolin F., Garcia-Segura LM, Keefe D., Leranth C., Maclusky NJ, Brawer JR Estrogen effects on the synaptology and neural membranes of the rat hypothalamic arcuate nucleus. Biol Reprod. 1990;42:21–28.

    Article  CAS  PubMed  Google Scholar 

  45. Brawer JR, Naftolin F., Martin J., Sonnenschein C. Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat. Endocrinology. 1978;103:501–512.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Segura LM, Chowen JA, Duenas M., Torres-Aleman I., Naftolin F. Gonadal steroids as promoters of neuro-glial plasticity. Psychoneuroendocrinology. 1994;19:445–453.

    Article  CAS  PubMed  Google Scholar 

  47. Parducz A., Perez J., Garcia-Segura LM. Estradiol induces plasticity of gabaergic synapses in the hypothalamus. Neuroscience. 1993;53:395–401.

    Article  CAS  PubMed  Google Scholar 

  48. Brown-Grant K., Exley D., Naftolin F. Peripheral plasma oestradiol and luteinizing hormone concentrations during the oestrous cycle of the rat. J Endocrinol. 1970;48:295–296.

    Article  CAS  PubMed  Google Scholar 

  49. Garcia-Segura LM, Hernandez P., Olmos G., Tranque PA, Naftolin F. Neuronal membrane remodelling during the oestrus cycle: a freeze-fracture study in the arcuate nucleus of the rat hypothalamus. J Neurocytol. 1988;17:377–383.

    Article  CAS  PubMed  Google Scholar 

  50. Olmos G., Naftolin F., Perez J., Tranque PA, Garcia-Segura LM. Synaptic remodeling in the rat arcuate nucleus during the estrous cycle. Neuroscience. 1989;32:663–667.

    Article  CAS  PubMed  Google Scholar 

  51. Naftolin F., Bruhlmann-Papazyan M., Baetens D., Garcia-Segura LM Neurons with whorl bodies have increased numbers of synapses. Brain Res. 1985;329:289–293.

    Article  CAS  PubMed  Google Scholar 

  52. Naftolin F., MacLusky NJ, Leranth CZ, Sakamoto HS, Garcia-Segura LM The cellular effects of estrogens on neuroendocrine tissues. J Steroid Biochem. 1988;30:195–207.

    Article  CAS  PubMed  Google Scholar 

  53. Naftolin F., Leranth C., Perez J., Garcia-Segura LM. Estrogen induces synaptic plasticity in adult primate neurons. Neuroendocrinology. 1993;57:935–939.

    Article  CAS  PubMed  Google Scholar 

  54. Horvath TL, Diano S., van den Pol AN Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci. 1999;19: 1072–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duenas M., Luquin S., Chowen JA, Torres-Aleman I., Naftolin F., Garcia-Segura LM Gonadal hormone regulation of insulinlike growth factor-I-like immunoreactivity in hypothalamic astroglia of developing and adult rats. Neuroendocrinology. 1994; 59:528–538.

    Article  CAS  PubMed  Google Scholar 

  56. Brawer JR The fine structure of the ependymal tanycytes at the level of the arcuate nucleus. J Comp Neurol. 1972;145:25–41.

    Article  CAS  PubMed  Google Scholar 

  57. Jakab RL, Horvath TL, Leranth C., Harada N., Naftolin F. Aromatase immunoreactivity in the rat brain: gonadectomysensitive hypothalamic neurons and an unresponsive “limbic ring” of the lateral septum-bed nucleus-amygdala complex. J Steroid Biochem Mol Biol. 1993;44:481–498.

    Article  CAS  PubMed  Google Scholar 

  58. Theodosis DT, Bonfanti L., Olive S., Rougon G., Poulain DA Adhesion molecules and structural plasticity of the adult hypothalamo-neurohypophysial system. Psychoneuroendocrinology. 1994;19:455–462.

    Article  CAS  PubMed  Google Scholar 

  59. Seifer D., Roa L., Keefe D., et al. Increasing hypothalamic arcuate nucleus glial peroxidase activity in aging female rats is reduced by an antiestrogen and a gonadotropin-releasing hormone agonist. Menopause. 1994;2:83–90.

    Google Scholar 

  60. Joseph SA, Knigge KM The endocrine hypothalamus: recent anatomical studies. Res Publ Assoc Res Nerv Ment Dis. 1978; 56:15–47.

    CAS  PubMed  Google Scholar 

  61. Garcia-Segura LM, Naftolin F., Hutchison JB, Azcoitia I., Chowen JA Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. J Neurobiol. 1999;40:574–584.

    Article  CAS  PubMed  Google Scholar 

  62. Garcia-Segura LM, Baetens D., Naftolin F. Sex differences and maturational changes in arcuate nucleus neuronal plasma membrane organization. Brain Res. 1985;351:146–149.

    Article  CAS  PubMed  Google Scholar 

  63. Olmos G., Aguilera P., Tranque P., Naftolin F., Garcia-Segura LM Estrogen-induced synaptic remodelling in adult rat brain is accompanied by the reorganization of neuronal membranes. Brain Res. 1987;425:57–64.

    Article  CAS  PubMed  Google Scholar 

  64. Garcia-Segura LM, Perez J., Tranque PA, Olmos G., Naftolin F. Sex differences in plasma membrane concanavalin A binding in the rat arcuate neurons. Brain Res Bull. 1989;22:651–655.

    Article  CAS  PubMed  Google Scholar 

  65. Derouiche A., Frotscher M. Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia. 2001;36:330–341.

    Article  CAS  PubMed  Google Scholar 

  66. Bretscher A., Edwards K., Fehon RG ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol. 2002; 3:586–599.

    Article  CAS  PubMed  Google Scholar 

  67. Song J., Fadiel A., Edusa V., et al. Estradiol-induced ezrin overexpression in ovarian cancer: a new signaling domain for estrogen. Cancer Lett. 2005;220:57–65.

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Segura LM, Duenas M., Fernandez-Galaz MC, et al. Interaction of the signalling pathways of insulin-like growth factor-I and sex steroids in the neuroendocrine hypothalamus. Horm Res. 1996;46:160–164.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Naftolin MD, DPhil.

Additional information

Supported by NIH HD 13587 and NS36111 (F.N.), NSF IBN-IBN-9728581 (T.L.H.), and SAF 2005-00272, Ministerio de Educacion y Ciencia, Spain (L.-M.G.S.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naftolin, F., Garcia-Segura, L.M., Horvath, T.L. et al. Estrogen-Induced Hypothalamic Synaptic Plasticity and Pituitary Sensitization in the Control of the Estrogen-Induced Gonadotrophin Surge. Reprod. Sci. 14, 101–116 (2007). https://doi.org/10.1177/1933719107301059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107301059

Key words

Navigation